
© EInnovator.org

Ja
v

a
8

 –
 L

a
m

b
d

as
, S

tr
e

am
s,

 C
o

lle
ct

o
rs

Java 8 introduces several new features similar to what
is found in functional programming languages. Lambda
expressions are introduced as a way to simplify the
implementation of functional interfaces. Stream
objects are operated using a fluent-AI and a wide-
variety of build-in functional interfaces.

Functional interfaces are interfaces with a single
method. (Not counting static and default methods,
explained below).

» Example: Functional Interface – Event Handler

public interface EventHandler {

void handle(Event event);
}

» Example: Functional Interface – Validator

public interface Validator<T> {

boolean test(T obj);
}

» Example: Functional Interface – Generic Metric

public interface Metric<T> {

double distance(T obj1, T obj2);
}

» Example: Functional Interface – Transform

public interface Transform<T,U> {

U apply(T obj);
}

A functional interface can, optionally, be annotated with
@java.lang.FunctionalInterface as a way to explicitly
mark that the interface is functional. Adding further
methods to such an interface will either produce
compile-time or run-time errors.

» Example: Explicit Functional Interface

import java.lang.FunctionalInterface;

@FunctionalInterface
public interface <Validator<T> {

boolean test(T obj);
}

Anonymous inner-classes are the most convenient way
to implement functional interfaces up-to Java 7. Named
classes (inner or top-level), provide have the advantage
of reuse.

» Example: Anonymous Class Implementation

filter(words, new Validator<String>() {
public boolean test(String word) {

return word.length>3;;
}

});

» Example: Named Class Implementation

public class WordValidator implements
Validator<String>() {

public boolean test(String word) {
return word.length>3;;

}
});

filter(words, new WordValidator());

While more less verbose than implementing as a named
class (inner or top-level), it is arguably still a too verbose
approaches – at least, compared with functional-like
languages like JavaScript, Groovy, and other.

Lambda expressions provide a light and convenient way
to define functional interfaces, with syntax (x0,x1,..) - >
f(x0,x1,...). Lambda expression can be used as
argument of methods that expect an instance of a
functional interface. Some examples as show below:

» Example: Lambda Expression with String

lines = transformAll(lines, s -> s.trim().toLowerCase());

+
+

 Q
u

ic
kG

u
id

es
 »

 E
In

n
o

v
at

o
r.

o
rg

1

Software Engineering School

C
o

n
te

n
t

» Functional Interfaces

» Lambda Expressions

» Streams

» Collectors
Jorge Simão, Ph.D.

Java 8 – Lambda Expressions,
Streams & Collectors

Java 8 - Functional Programming

Functional Interfaces

Implementing Functional Interfaces

Lambda Expressions

http://www.einnovator.org/
http://www.einnovator.org/quickguide

Java 8 – Lambda Expressions,
Streams, and Collectors

» Example: Event Handler as Lambda Expression

widget.onClick(ev -> dialog.show());

» Example: Metrics for 2D Points

diameter(dataset, (p,q) -> (p.x-q.x)^2 + (p.y-q.y)^2);
diameter(dataset, (p,q) -> abs(p.x-q.x) + abs(p.y-q.y));

» Example: Lambda Expression for Validator

validate(about, s -> s.length>=12 and s.length<1024);

» Example: Lambda Expression with JDBC

String sql = “select id,username,email,password from Users”;
List<Users> users = JdbcUtil.query(connection, sql,

(ResultSet rs) -> new User(
rs.getColumn(“id”), rs.getColumn(“username”),
rs.getColumn(“email”), rs.getColumn(“username”)));

Lambda expressions can be written with several styles or
cases, summarizes below:

Syntax Style Example

Explicit parameter
type

(String s) → s.length>3

Implicit parameter
type

(s) → s.length>3

No parameters () -> Math.random()

Single Parameter (s) -> s.length
s -> s.length

Multiple Parameters (s1,s2) -> s1.length-s2.length

Result Expression (s) -> s.length>3

Statement Block (s) -> {
for (int i=0; i<s.length; i++) {

if (!isAlpha(s.charAt(i))) {
return false;

}
return true;

}

Default methods are methods whose implementation is define
directly inside an interface definition. All classes implementing
the interface automatically inherit the implementation of the
method, although they can also overwrite it. Default methods
have the modifier default.

Snippet below illustrates the use of a default method
implementation. Notice that class WordValidator the

implementation of negate() from the interface Validator.

» Example: Default Method in Functional Interface

public interface Validator<T> {
boolean test(T obj);

default Validator<T> negate() {
return (obj) -> !test(obj);

}
}

public class WordValidator implements Validator<String> {
public boolean test(String s) {

return s.length>3 && s.length<256;
}

}

List<String> words = ...
WordValidator Validator = new WordValidator();

List<String> valid = filter(words, Validator);
List<String> invalid = filter(words, Validator.negate());

A functional interface can define static methods. A common
use is for factory methods that create an instance of the
interface out of other instance(s).

» Example: Static Method in Functional Interface

public interface Validator<T> {
boolean test(T obj);
...
static <T> ValidatorChecker<T>
andN(Validator<? super T>... validators) {

return (obj) -> {
for (Validator<T> validator: validators) {

if (!validator.test(obj)) {
return false;

}
}
return true;

}
}

}

List<String> valid = filter(words, Validator.andN(
new WordValidator(),
Validator.negate(new InDicitionary()),
s -> s.indexOf('-')<0);

Named method are a convenient way to write a lambda
expression whose behaviour is simply to call a method. The
general syntax is ClassName::methodName or
object::methodName. The following cases are supported:

Software Engineering School

2

Default and Static Interface Methods

Named Methods and Constructors

© EInnovator.org

http://www.einnovator.org/

Java 8 – Lambda Expressions,
Streams, and Collectors

Static method

 Instance method, of a specific object

 Instance method, of an arbitrary object

 Constructor

» Example: Named Static Method

filter(emails, EmailUtil::isValid);

» Example: Named Instance Method

filter(words, new WordValidator(3,7,”\d{16}”)::isValid);

» Example: Named Instance Method – Arbitrary Object

max(portfolios, Portfolio::compareByValue);

» Example: Named Constructor

filter(stocks, s -> s.getDelta()>0, TreeSet::new);

Java 8 provides several useful Functional interfaces out-of-the-
box, that can be used with Streams and in other contexts.

Table below describes some of the most useful built-in
functional interfaces.

Interface Method Description

Predicate<T> test(T) Condition on Object

Supplier<T> T get() Object source

Consumer<T> accept(T) Object sink

Function<T,U> U map(T) Object mapping

These built-in functional interfaces a often combined in
processing pipelines:

Snippet below illustrates the use of several built-in functional
interfaces.

» Example: Processing Data with Built-in Interfaces

<T> void process(Supplier<T> supplier,
Predicate<T> predicate, Function<T,U> f,
Consumer<T> consumer) {

T obj = null;
while ((obj=supplier.get()!=null)) {

if (predicate.test(obj)) {
consumer.accept(f.apply(obj));

}
}

}

final Iterator<String> it = dataset.iterator();
process(p -> it.hasNext() ? it.next() : null,

p -> !isOutlier(p, dataset),
p-> normalize(p)
p -> out.println(p));

Table below describes further built-in functional interfaces to
work with object pairs:

Interface Method Description

BiPredicate<T,U> test(T,U) Condition on pair of
Objects

BiConsumer<T> accept(T,U) Object pair sink

Function<T,U,R> R map(T,R) Object pair mapping

A Stream is an abstraction for a consumable source of objects,
with a fluent API to process and consume objects.

» Example: Stream Processing

words.stream()
.filter(s -> s.length>3)
.map(s → s.toLowerCase())
.sort()
.distinct()
.sort((s1,s2) -> s1.length<s2.length)
.forEach(s->System.out.println(s));

“Now”, “Hello”, “the”, “World”, “Goodbye”, “world”

hello
world
goodbye

Table below summaries the API of Streams:

Method & Example Description

map(Function<?,?>) Map elements

ds.map(s -> s.length)

filter(Predicate<?>) Filter elements

ds.filter(s -> s.length>3)

forEach(Consumer<?>) Iterate elements

Input

Output

Supplier ConsumerPredicate Function

produce filter map process

Software Engineering School

3

Built-in Functional Interfaces

Streams

© EInnovator.org

http://www.einnovator.org/

Java 8 – Lambda Expressions,
Streams, and Collectors

forEachOrdered(Consumer<? >) Sort and Iterate

limit(long maxSize) Discard after maxSize
elements

skip(long n) Skip first n elements

Snippet below show some further examples of using the
Stream API:

» Example: Stream Elements

words.words.stream()
.map(TextUtil::transform)
.filter(validator::isValid(s))
.skip(2*pageSize)
.limit(pageSize)
.forEach(s->words.add(s));

Streams operations can be performed in parallel by splitting a
stream in successive halves.

The interface Spliterator defines the API that Stream
operations can use to split a Stream.

The Stream.reduce() operation allow all elements of a Stream
to be processed and combined in a single result value. A
accumulator function is used to the reduction of each element
with the current intermediary result.

The reduce() method comes is several variations. In the
simplest form, the accumulator is a BinaryOperator and the
identity parameter is specified for the initial value to be
accumulated. If the Stream as no elements the identity
parameter is returned as a result.

» Example: Reduce Operation – With Identity
Stream<Integer> series =

Stream.iterate(1, n -> n+1).limit(1000);
series.reduce(0, (n,m)->n+m);
List<String> words = ...
words.stream()

.map(s -> s.length)

.reduce(0, Integer::sum);

When the identity parameter is absent, another reduce()
method returns an Optional<T>. This is a result descriptor
which can be used to check if a result exist (i.e. the Stream is
not empty), and to get the result. If the Stream as a single
element the result is the that element.

» Example: Reduce Operation – Returning Optional

Optional<Integer> result = series.reduce(Integer::sum);

int sum = result.isPresent() ? result:get() : 0;

A third variant of reduce() can be used to combine a map and
and a reduce operation in a single step.

Table below detail the signature of the three reduce methods.

Reduce Methods (Oveloaded)

T reduce(T identity, BinaryOperator<T> accumulator);

Optional<T> reduce(BinaryOperator<T> accumulator);

<U> U reduce(U identity,
BiFunction<U, ? super T, U> accumulator,
BinaryOperator<U> combiner);

Notice that in the third reduce() variant the result value is
different from the type of the Stream elements. A BiFunction is
used as accumulator.

When Streams are parallel each split of the Stream is reduced
in separately.

» Example: Reduce Operation – With Combiner

The Stream.combine() operation allows for the optimization of
reduce() operations, by applying the accumulator to a mutable
result container, such as a Collection or StringBuilder.

Collect Methods (Overloaded)

<R> R collect(Supplier<R> supplier,

BiConsumer<R,? super T> accumulator,

BiConsumer<R,R> combiner)

<R,A> R collect(Collector<? super T,A,R> collector)

Snippets below show some further examples of using the
Stream API:

» Example: Collect Operation

Stream<Integer> series = Stream.iterate(1, n ->
n+1).limit(1000);
series.reduce(0, (n,m)->n+m);

Software Engineering School

4

Parallel Streams and Spliterators

Reduce and Collect Operations

Collectors

© EInnovator.org

http://www.einnovator.org/

Java 8 – Lambda Expressions,
Streams, and Collectors

Collectors are descriptors that define all the strategies required
to perform a collect() operation.

» Collector Interface

public interface Collector<T,A,R> {

Supplier<A> supplier();

BiConsumer<A,T> accumulator();

BinaryOperator<A> combiner();

Function<A,R> finisher();

Set<Collector.Characteristics> characteristics();

}

» Collector.Characteristics

enum Collector.Characteristics {

CONCURRENT,

IDENTITY_FINISH,

UNORDERED

}

Snippet illustrates the use of method Collector.of() to create a
collector out of the individual strategies:

» Example: Creating a Collector

Collector<String,ArrayList> appender =

Collector.of(ArrayList::new, ArrayList::add, ArrayList::addAll);
Stream<String> words =/ …
List<String> wordList = words.collect(appender);

Java provides several built-in collectors created by factory
methods in utility class Collectors. Snippet below show how a
built-in collectors can be used.

» Example: Summing with Built-in Collector

Collector<Employee, ?, Integer> sumLength

 = Collectors.summingInt(String::length);

int charCount = words.stream().collect(sumLength);

The built-in collector returned by method
Collectors.groupingBy() groups all elements that have the
same criteria value in a Map, where the key is the criteria
value and the entry value is the List of all elements in the
Stream matching the criteria – the group.

» Example: Grouping with Built-in Collector

words.stream().collect(
Collectors.groupingBy(s->s.length);

“Now”, “Hello”, “the”, “World”, “Goodbye”, “world”

{3={Now,the}, 5={Hello,World}, 7={Goodbye}}

A second collector can be provided as argument to
groupingBy() to combine all element in each group.

» Example: Grouping followed by Aggregation

words.stream().collect(
Collectors.groupingBy(User::getCountry,

Collectors.counting());

User(username=”Joe”, country=”UK”, ...), ...

{UK=98, US=130, DE=76, PT=12, ES=22}

Method Collectors.partitioning() returns a Map with boolean
entries, splitting the Stream elements in two sub-sets - the
elements that match and don't match a boolean criteria:

» Example: Partitioning with Predicate

words.stream().collect(
Collectors.groupingBy(s->s.length>3);

“Now”, “Hello”, “the”, “World”, “Goodbye”, “world”, ...

{false={Now,the}, true={Hello,World,Goodbye}}

The partitioning() method can also be provided a second
collector as argument to combine all elements in each
partitioning.

» Example: Partitioning Followed by Aggregation

words.stream().collect(
Collectors.groupingBy(s->s.length>3,

Input

Input

Input

Input

Output

Output

Output

Software Engineering School

5

Built-in Collectors

© EInnovator.org

http://www.einnovator.org/

Java 8 – Lambda Expressions,
Streams, and Collectors

Collectors.counting());

“Now”, “Hello”, “the”, “World”, “Goodbye”, “world”, ..., ...

{false=2, true=3}

Table below summaries the factory methods in utility class
Collectors:

Method Collectors.* Description

counting() Count elements

joining()
joining(String separator)

Joining Strings

toSet() Build Set

toList() Build List

toCollection() Build Collection

toMap() Build Map

summingInt()
summingLong()
summingDouble()

Sum Numbers

averagingInt()
averagingLong()
averegingDouble()

 Averaging Numbers

summarizingInt()
summarizingLong()
summarizingDouble()

Summary statitics

groupingBy() Group elements

partitioningBy() Partition elements

• JavaTM Tutorial on Lamba Expressions by OracleTM

Output

Input

Software Engineering School

6

Resources

© EInnovator.org

http://www.einnovator.org/

Java 8 – Lambda Expressions,
Streams, and Collectors

About the Author
Jorge Simão is a software engineer and IT Trainer, with
two decades long experience on education delivery both in
academia and industry. Expert in a wide range of
computing topics, he his an author, trainer, and director
(Education & Consulting) at EInnovator. He holds a B.Sc.,
M.Sc., and Ph.D. in Computer Science and Engineering.

Java Programming Training
Master your Java with a trainer-lead 5 day course on Java
Programming. Covers everything needed to become a
professional Java developer, including: imperative and
object-oriented programming with Java, basic and advanced
APIs, Java 8 lambda expressions and streams, and
enterprise Java topics, such as: Dependency-
Injection+AOP, JPA, and Web development. Custom training
with selected topics and duration also available on demand.
Register for a public or online class or book an on-site class:
www.einnovator.org/course/java

++ QuickGuides » EInnovator.org
» Spring Container

» Spring MVC, Spring WebFlow

» RabbitMQ, Redis

» and much more...

++ Courses » EInnovator.org
» Core Spring, Spring Web, Enterprise Spring

» RabbitMQ, Redis, JPA

» BigData and Hadoop, Spark

» and much more...

EInnovator – Software Engineering School

EInnovator.org offers the best Software Engineering resources and education, in partnership with the most
innovative companies in the IT-world. Focusing on both foundational and cutting-edge technologies and
topics, at EInnovator software engineers and data-scientists can get all the skills needed to become top-of-
the-line on state-of-the-art IT professionals.

Training – Bookings & Inquiries
training@einnovator.org

Consultancy – Partnerships & Inquiries
consulting@einnovator.org

General Info
info@einnovator.org

Software Engineering School

Copyright © 2014 EInnovator.org. All rights reserved.

7

Contacts

http://www.einnovator.org/course/java
http://www.jpalace.org/course/java
http://www.jpalace.org/account/jorge.simao
mailto:info@jpalace.org
mailto:feedback@jpalace.org
mailto:training@jpalace.org
http://www.jpalace.org/
http://www.jpalace.org/
http://www.jpalace.org/course/java

