
© EInnovator.org

R
ed

is
 A

d
m

in
is

tr
at

io
n

Redis is a NoSql data-structures store. It resembles a
key–value store – allowing values to be set and retrieve
by key, but in addition to simple strings values can also
represent several built-in data-structures, including: lists,
hashes (dictionaries), sets, and sorted sets.

A distinguish feature of Redis is that it loads the full state
of the data-store into memory, thus allowing for very fast
read&write access. Several techniques can be used to
mitigate the memory footprint of Redis when the dataset
grow beyond the physical memory limits – such as
expiring not so much used keys, and partitioning
(sharding) data across multiple nodes connected as a
cluster.

Redis also supports for replication of data for increased
fault-tolerance, using master-slave replication. High-
availability and automatic failover is achieved by setting
up a small cluster of dedicated monitoring servers known
as sentinels.

Redis is very straightforward to install. In a typical Linux
installation or MacOS, it builds from the source code out-
of-the-box without requiring any configuration. For
Windows, there is a distribution managed by Microsoft,
that currently has an MSI installer that sets up Redis as a
Windows service. To start Redis manually, both in Linux
and Windows, use command redis-server. By default,
Redis listen for client connections on TCP/IP port 6379.
Depending on the OS, kernel version, and current kernel
configuration, Redis might suggest on start up some OS-
level settings for increased performance.

» Example: Installation Redis (Linux)

$ wget http://download.redis.io/releases/redis-3.2.0.tar.gz
$ tar -xzf redis-3.2.0.tar.gz
$ cd redis-3.2.0
$ make
$ make install

» Example: Starting Redis

$ redis-server

[12536] 27 May 16:47:10.100 # Warning: no config file specified,
using the default config. In order to specify a config file use

redis-server /path/to/redis.conf
 .
 _.-``__ ''-._
 .-`` `. `. ''-._ Redis 3.0.501 (00/0) 64 bit
 .-`` .-```. ```\/ _.,_ ''-._
 (' , .-` | `,) Running in standalone mode
 |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379
 | `-._ `._ / _.-' | PID: 12536
 `-._ `-._ `-./ _.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' | http://redis.io
 `-._ `-._`-.__.-'_.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' |
 `-._ `-._`-.__.-'_.-' _.-'
 `-._ `-.__.-' _.-'
 `-._ _.-'
 `-.__.-'

[12536] 27 May 16:47:10.124 # Server started, Redis version 3.0.501
[12536] 27 May 16:47:10.383 * DB loaded from disk: 0.258 seconds
[12536] 27 May 16:47:10.383 * The server is now ready to accept
connections on port 6379

Redis can be configured by starting the redis-server with
the path to a configuration file as argument. The
configuration file is a text file with a simple syntax – one
setting per line, and each setting has a name followed by
one or more arguments. The configuration directive
include <filename> can be use to split the configuration
into multiple files.

» Example: Starting Redis with Configuration File

redis-server /path/redis.com

» Example: Redis Configuration File

port 5000
logfile /var/log/redis.log

Table below summarizes some of the Redis configuration
parameter. Later sections describe additional parameters.

Parameter Description [default]

port <n> TCP/IP port for client connections
[6379]

bind <ip> network interface IP to bind socket

unixsocket <filename>
unixsocketperm <rwx>

Unix socket path and permission for
local connections (e.g. 400)

timeout <sec> client timeout before disconnect [0]

tcp-keepalive <sec> Send keepalive msg to client (sec) [5]

+
+

 Q
u

ic
kG

u
id

es
 »

 E
In

n
o

v
at

o
r.

o
rg

10

Software Engineering School

C
o

n
te

n
t

» Redis Installation

» Redis Configuration

» Redis Persistence

» Redis Replication

» HA with Redis Sentinel

» Redis Cluster Partitioning
Jorge Simão, Ph.D.

Redis
Administration

Redis Installation

Configuring Redis

Redis Overview

http://www.einnovator.org/
http://download.redis.io/releases/redis-3.2.0.tar.gz
http://www.einnovator.org/quickguide

Redis Admin

pidfile <filename.pid> Path to created PID file

loglevel <level> Logging level (debug | verbose |notice |
warning)

logfile <filename> Log file path (e.g. /var/log/redis.log)

syslog-enabled no
syslog-ident redis
syslog-facility local0

Syslog configuration

databases <n> Number of Databases (1–N) [16]

Redis comes with a convenient command-line tool (CLI), that
can be used to execute arbitrary Redis commands. The CLI
support all the commands defined by Redis wire-level protocol
(text-based). A useful command CONFIG SET allows
configuration parameters to be change dynamically.

» Example: Starting Redis CLI Interactively

$ redis-cli

» Example: Execute Commands on Redis CLI

> KEYS *

» Example: Getting Help from Redis CLI

redis-cli --help

» Example: Execute Single Command and Return

redis-cli keys "*"

A single Redis server can manage multiple logical databases,
up to the value of parameter databases (16 by default).
Command SELECT is used by a client and the Redis CLI to
select current database.

Table below summarizes some of the Redis server
administration and configuration commands. (Companion
EInnovator Refcard Redis #9 describes many of the
commands used for manipulating keys and data-structure
values.)

Command Description

CONFIG SET Dynamically set a configuration parameter

CONFIG GET Get value of configuration parameter

CONFIG REWRITE Rewrite the configuration file

AUTH Authenticate with password

SELECT Switch to database (1-16)

FLUSHDB <db> Remove all keys from specified database

FLUSH ALL Remove all keys from all databases

DBSIZE Get size in byte for current database

INFO Show details about server

SHUTDOWN Persistent data and stop server

CLIENT LIST Get list of connected clients

CLIENT SETNAME
CLIENT GETNAME

Set/Get symbolic name for this connection

CLIENT KILL <ip:port> Kill specified client

Redis supports to modes of persistence – based on snapshot
files (RDB), or append-only files (AOF). A snapshot file
contains the complete dataset of Redis in a compact binary
(possibly compressed) format. A snapshot is created by writing
the state of Redis in-memory to the RDB file. Configuration
directive save <sec> <nwrites>, defines a save-point (RDB
saving rule) specifying that a new file should be created after
<sec> seconds have pasted since last one, and at least
<nwrites> write operations (e.g. SET, DEL, etc.) have been
performed. A single save-point save "" disable RDB
snapshots, and it useful when Redis is being used simply as a
cache. The commands SAVE and BGSAVE (background
save) can be used to manually request the writing of the RDB
file. Consistency during file creation is guaranteed by writing
the new RDB to a temporary file first, followed by an atomic
move/mv operation.

By default, the RDB file is called dump.rdb and its stored in
same directory as the server was started, but this can be
changed with configuration parameters dbfilename and dir.
Two parameters tailor the file fomat: rdbcompression yes,
makes the file to be compressed in LZF compression, and
rdbchecksum adds a CRC64 checksum to the end of the file
used to check for file corruption at server start-up. Parameter
stop-writes-on-bgsave-error yes instructs the server to stop
accepting write operations if the last RDB snapshot could not
be written in success.

» Example: redis.conf w/ Default RDB Settings

save 900 1
save 300 10
save 60 10000
stop-writes-on-bgsave-error yes
rdbcompression yes
rdbchecksum yes
dbfilename dump.rdb
dir ./

» Example: Manual Saving RDB File

> BGSAVE

Background saving started

[5560] 24 Aug 13:53:15.243 * Background saving started by pid 412

Software Engineering School

2

Redis CLI

Redis Persistence

© EInnovator.org

http://www.einnovator.org/

Redis Admin

[5560] 24 Aug 13:53:15.696 # fork operation complete
[5560] 24 Aug 13:53:15.746 * Background saving terminated with success

In append-only (AOF) mode of persistence, the AOF file is
appended to contain one entry per write operation that is
performed on the server. When the server restarts, the AOF file
is replayed to recreate the state of the database since last
snapshot (RDB file written). The configuration parameter
appendonly yes is used to enable AOF persistence (by
default is off). The AOF file format is text-based (similarly to the
wire-level client protocol of Redis). This allows for manual
inspection and even modification of the file (e.g. remove
erroneous operations).

Appending the AOF is not sufficient condition to guarantee the
persistence of the data, since the OS file-system manager
performs some caching and delays for some time hard-drive
writes. The system-call fsync() is used to force the OS to flush
the cache to the physical disk. The configuration parameter
appendfsync is used to instruct Redis when to perform a
fsync(). Three values are supported: everysec – flush every
second (recommended), always (relatively slower), no (for
high-performance requirements). With this last setting
appendfsync no the OS has full control when the flush is
performed (usually 30seconds in Linux system). Operations
appended to the AOF file but not yet included in last flush, can
be lost if the server crashes abruptly.

Since all write operations are recorded in a AOF file, the file
can become large. To mitigate this, Redis supports AOF file
rewrite in which multiple operations are replaced by smaller set
that it is functionally equivalent (e.g. multiple consecutive SET
on the same key can be replaced by only the last one, or
multiple INCR operation can be replaced by a single INCRBY).
The command BGREWRITEAOF instructs the AOF file to be
rewritten on request. Automatic rewriting is also supported and
controller by configuration parameter auto-aof-rewrite-
percentage – specifying that AOF rewrite should be done
when it grows by a certain percentage, and auto-aof-rewrite-
min-size that sets a minimum file size for the rewrite to be
done. By default, the AOF file is called appendonly.aof and its
stored in same folder as the RDB file. This can be changed
with configuration parameter appendfilename.

» Example: redis.conf w/ Default AOF Settings

appendonly no
appendfilename "appendonly.aof"
appendfsync everysec
no-appendfsync-on-rewrite no
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
aof-load-truncated yes

» Example: Manual Saving RDB File

> BGREWRITEAOF

Background append only file rewriting started

[5560] 24 Aug * Background append only file rewriting started by pid 1144
[5560] 24 Aug * AOF rewrite child asks to stop sending diffs.
[5560] 24 Aug # fork operation complete
[5560] 24 Aug * Background AOF rewrite terminated with success
[5560] 24 Aug * Residual parent diff successfully flushed to the rewritten
AOF (1.00 MB)
[5560] 24 Aug * Background AOF rewrite finished successfully

Table below summarizes Redis configuration parameters
related with persistence (RDB & AOF).

RDB Config Parameter Description [default]

save <sec> <nwrites> Save-point rule

dbfilename <filename> RDB file [dump.rdb]

dir <dirname> Directory for the RDB & AOF files [.]

rdbcompression <yes|no> Compress the RDB file [yes]

rdbchecksum <yes|no> Add CRC64 checksum to end of file
[yes]

stop-writes-on-bgsave-error
<yes|no>

Stop accepting writes on error [yes]

AOF Config Parameter Description [default]

appendonly <no|yes> Enabled/Disable AOF persistence

appendfilename <filename> AOF filename [appendonly.aof]

appendfsync <everysec|
always|no>

When to perform fsync [everysec]

auto-aof-rewrite-percentage
<%>

Auto-rewrite AOF when grows
percentage [100]

auto-aof-rewrite-min-size Min AOF size for auto-rewrite [64mb]

no-appendfsync-on-rewrite
no

No fsync on AOF-rewrite | RDB-save

aof-load-truncated yes Apply AOF even if file is tail truncated

Table below summarizes the Redis administration commands
related with persistence.

Command Description

SAVE Save RDB File

BGSAVE Background save RDB file

BGREWRITEAOF Background save AOF file

LASTSAVE Get timestamp of last successful save

Redis supports master-slave replication for increased reliability
and scale. A Redis server can be made a slave of another
server with configuration parameter slaveof <ip> <port>.

Software Engineering School

3

Redis Master-Slave Replication

© EInnovator.org

http://www.einnovator.org/

Redis Admin

Slaves contact the master at start-up, and the master send a
snapshot with the current state. Any updates done on the
server after the snapshot is sent, are propagated to the slaves
semi-synchronously as separated commands, i.e. without the
client of the master waiting. (In Redis documentation this is
designated as asynchronous.) The parameter repl-disable-
tcp-nodelay yes can also be used to instruct the OS of the
master to send the TCP/IP packets immediate without waiting
till buffers fill-up to make the propagation of operation faster.

Commonly (and by default) slaves are configured in read-only
mode, since any updates done in a slave are not propagated
to the master. The configuration parameter slave-read-only
can be used to control this setting. By default slaves are
configured to continue operation if the connection to the
master is lost. This can be changed with parameter slave-
serve-stale-data.

By default the master snapshot is written to disk as a regular
RDB file before sending it to the slave. Alternatively, an in-
memory snapshot can be sent directly to the slave without
writing to the disk by setting configuration parameter repl-
diskless-sync yes. Transfer of the RDB snapshot file to a
slave is done by a child (forked) process, and the child needs
to know before starting which slaves to make the transfer to.
Additional slaves need to wait till the previous transfer(s)
complete. The parameter repl-diskless-sync-delay <sec>
can be set to make the server wait some time before forking
the child and start the transfers, in the expectation that others
slaves might arrive.

A slave sends a PING message to the master periodically to
inform the server that its alive and reachable. The parameter
repl-ping-slave-period defines the frequency of the PING
message (10 seconds, by default). Parameter repl-timeout
control the time before the master considers the slave
unreachable, or a slave consider the master unreachable.

The master also maintains a buffer with recent operations.
When a slave was only temporarily unreachable, the master
checks if it is possible to send only the buffered operations
rather than a full snapshot. Parameter repl-backlog-size and
repl-backlog-ttl specifies the maximum length of this buffer
and the time is kept.

For increased robustness, it also possible to configure the
master to have a minimum number of available slaves in order
to accept write operations. This is set with parameters min-
slaves-to-write, and min-slaves-max-lag (time before last
PING for slave to be considered available).

» Example: redis.conf of a Slave

slaveof 159.203.129.131 5000
slave-read-only yes

slave-serve-stale-data yes
repl-ping-slave-period 10
repl-timeout 60

» Example: redis.conf of a Master

repl-diskless-sync yes
repl-diskless-sync-delay 15
repl-timeout 60
repl-disable-tcp-nodelay yes
repl-backlog-size 1mb
repl-backlog-ttl 3600
min-slaves-to-write 2
min-slaves-max-lag 30

Table below summarizes Redis configuration parameters
related with master-slave replication.

Replication Conf Param Description [default]

slaveof <master-ip>
<master-port>

Make server slave of specified master

masterauth <master-
password>

Password to authenticated on master

slave-serve-stale-data <yes|
no>

Accept commands even if link to
master is broken

slave-read-only <yes|no> Slaves not to accept write commands

repl-diskless-sync <no|yes> Use in-memory replication snapshoot
[no]

repl-diskless-sync-delay
<sec>

Wait this time for additional slaves

repl-ping-slave-period Frequency of PING sent to master [10]

repl-timeout <sec> [60] Time to consider server unreachable

repl-disable-tcp-nodelay no Don't wait to send commands to slave

repl-backlog-size <size>
(1mb)

Buffer size for commands to send to
slaves

repl-backlog-ttl <sec>
(3600)

Delete command buffer after ms

slave-priority <priority> [100] Slave priority in selecting new master

min-slaves-to-write <n> Min reachable slaves to accept writes

min-slaves-max-lag <sec> Last slave ping to be reachable

slave-announce-ip 5.5.5.5
slave-announce-port 1234

Announce this slave IP/port (container
and NAT support)

Table below summarizes the Redis commands for replication
management.

Command Description

SLAVEOF <master-ip> <port> Become slave of specified master

ROLE Get current role of node (master |
slave | sentinel)

Software Engineering School

4

© EInnovator.org

http://www.einnovator.org/

Redis Admin

Redis can be setup as a highly-available distributed system by
automatically detect that a master is down (or unreachable)
and select a slave to become a new master. This is done by
running some Redis servers in Sentinel mode, with command
line argument --sentinel. A sentinel instance checks if one (or
more) configured masters are reachable, and triggers a
failover procedure to make a slave a new master when the
previous master fails. To ensure true high-availability the
sentinel node should also be replicated, and a minimum of 3
sentinels is required.

A configuration file needs to be provided when starting each
sentinel. This is a file that describes which masters to monitor.
The slaves of each master are automatically discovered when
the sentinel connects to the master. Configuration parameter
sentinel monitor <name> <ip> <port> <quorum> define a
named master to be monitored. The quorum setting is the
number of sentinels that need to agree (subjectively) that a
master is down, to consider it (objectively) down. When master
is agreed to be down, a coordination protocol takes places
between the sentinels to select which slave to be the new
master and initiate the failover. In case a sentinel goes down,
is also excluded. Only the majority partition of sentinel nodes is
allowed to perform the failover.

» Example: Sentinel Configuration File

port 5000
sentinel monitor mymaster 127.0.0.1 6379 2
sentinel down-after-milliseconds mymaster 60000
sentinel failover-timeout mymaster 180000
sentinel parallel-syncs mymaster 1

» Example: Starting Sentinels

> redis-server sentinel.conf --sentinel

Table below summarizes Redis configuration parameters
related with high-availability using sentinels.

Sentinel Config Param Description [default]

sentinel monitor <name> <ip>
<port> <quorum>

Monitor named master in ip:port.
Quorum agreement to consider
master down.

sentinel down-after-
milliseconds <name> <ms>

Time without PING to consider mast
or other sentinel down (dflt:60000)

sentinel failover-timeout
<name> <ms>

Maximum time to complete failover.
(dflt:180000)

sentinel parallel-syncs
<name> <n>

Max number of server informed about
new master at same time (dflt:1)

Table below summarizes the Redis commands for high-

availability management.

Command Description

SENTINEL SET Set sentinel configuration property
dynamically

SENTINEL MASTER <name> Show status of named master

SENTINEL GET-MASTER-
ADDR-BY-NAME <name>

Get ip:port of current master
(with given configuration name)

SENTINEL SLAVES <name> Show slaves of named master

SENTINEL SENTINELS
<name>

Show sentinels monitoring named
master

SENTINEL RESET Rest sentinel state & failover process

SENTINEL FAILOVER
<name>

Force a failover on named master
(select a slave as new master)

SENTINEL CKQUORUM
<name>

Check if quorum for failure-detection
and failover majority is achievable

SENTINEL FLUSHCONFIG Force rewrite of sentinel config file

Redis servers can be run in a cluster mode where data is
sharded (spread) across the different nodes. This is specially
important in Redis since this allow to by-pass the limitation of
available memory in nodes. Each stored key is assigned to
one of 16K buckets, trough CRC16%16K hashing, and each
node in the cluster is responsible to a configured set of
buckets. All members of a cluster maintain a table with the
location of each bucket. When a client tries to access a key (in
a read or write operation), if the node the client is currently
connected to does not hold the key it receive a redirect
response pointing to the right node holding that particular key.
The client is then expected to connect to the node holding the
key. Although clients don't control the location the keys, the
use of hash-tags of the form prefix{tag}suffix guarantees co-
location for keys with the same tag value.

The configuration setting cluster-enable yes makes a node to
start in cluster mode. Each node maintain a cluster
configuration file that hold the current membership and state of
the cluster as perceived by the node. The default name for this
file is nodes.conf, but this can be changed with setting
cluster-config-file. Each node in the cluster is assigned an
unique ID, and this file contains the nodes IDs so the cluster
state can be recovered even if the cluster is shutdown for
some time.

Data bucket can also be replicated, by using master and slave
nodes. Each slave will replicated all buckets managed by the
corresponding master node. When a slave considers its
master to be down, it will run a failover protocol to try become

Software Engineering School

5

Redis High-Availability with Sentinel

Redis Cluster

© EInnovator.org

http://www.einnovator.org/

Redis Admin

the new master.

When a node starts first time it will not be connected to another
cluster node. To connect the nodes in a cluster the command
CLUSTER MEET can be used. More conveniently, the utility
redis-trib is used with command create. When the cluster is
created in this way, the assignment of buckets to nodes is
done automatically by the tool. It is also possible to later move
the location of buckets with command redis-trib.rb reshard,
specifying the count of buckets to move and the source and
destination nodes by identifier.

Client libraries and tools need to have support for clusters and
follow the redirects send by nodes. The Redis CLI tool can be
started with this feature enabled with command-line option -c.

» Example: redis.conf Settings for a Cluster Node

cluster-enabled yes
cluster-config-file nodes-6379.conf
cluster-node-timeout 15000
cluster-slave-validity-factor 10
cluster-migration-barrier 1
cluster-require-full-coverage yes

» Example: Starting a Redis Cluster (3Master + 3Slaves)

$ gem install redis

$./redis-trib.rb create --replicas 1 127.0.0.1:7000
127.0.0.1:7001 127.0.0.1:7002 127.0.0.1:7003
127.0.0.1:7004 127.0.0.1:7005

» Example: Resharding Redis Cluster

SET NODE1=`redis-cli -p 7000 cluster nodes|grep myself |awk "{print $1}"`

SET NODE2=`redis-cli -p 7000 cluster nodes|sed -n '2p' |awk "{print $1}"`

$./redis-trib.rb reshard --from $NODE1 --to $NODE2
--slots 1000 --yes 127.0.0.1:7000

» Example: Starting Redis CLI in Cluster Mode

$ redis-cli -c -p 7000

> redis 127.0.0.1:7000> set user:eva:age 33

-> Redirected to slot [12182] located at 127.0.0.1:7002
OK

A cluster membership can also be modified dynamically with
command redis-trib add-node. A node newly added as a
master will not be responsible to manage any bucket. So
resharding should be done to make the node useful. New
slaves nodes can also be added dynamically with option add-
node.--slave.

» Example: Add New Node To Cluster – As Master

./redis-trib.rb add-node 127.0.0.1:7006 127.0.0.1:7000

SET NODE7=`redis-cli -p 7000 cluster nodes|sed -n '7p' |awk "{print $1}"`

$./redis-trib.rb reshard --from $NODE0 --to $NODE7
--slots 1000 --yes 127.0.0.1:7000

» Example: Add New Node To Cluster – As Slave

$./redis-trib.rb add-node --slave 127.0.0.1:7006
127.0.0.1:7000

» Example: Remove Node From Cluster

$./redis-trib del-node 127.0.0.1:7000 $NODE3

Table below summarizes Redis configuration parameters
related with cluster management.

Cluster Config Param Description [default]

cluster-enabled <yes|no> Enable cluster model [no]

cluster-config-file <file> Cluster state file [nodes.conf]

cluster-node-timeout <ms> Timeout to consider node down
[15000]

cluster-slave-validity-factor
<n>

Timeout factor to promote slave to
master [10]

cluster-migration-barrier <n> Min slaves up for a master before
change master[1]

cluster-require-full-coverage
<yes|no>

Continue to operate the cluster if
some buckets are unavailable [yes]

Table below summarizes some of the Redis commands for
clustering management.

Command Description

CLUSTER MEET <ip> <port> Join cluster through specified node

CLUSTER NODES Show list of cluster node

CLUSTER SLAVES <id> Show list of slaves for master with ID

CLUSTER REPLICATE <id> Make node slave of a master

CLUSTER FORGET <id> Remove node from cluster

CLUSTER SLOTS Show details of assigned slot→node

CLUSTER ADDSLOTS
<slot>*

Add unassigned slots to connected
node

Several configuration parameters define limits and control
Redis behavior under heave-load. The maximum number of
allowed client connection is set with maxclients. Parameter
maxmemory specifies the maximum amount of memory to
use. If memory is exhausted, memory commands that would
require more memory (e.g. SET on a new key) return an error.
Parameter maxmemory-policy can also be use to discard
keys and release memory when needed. Setting to a value
different from the default noeviction, will make the server
discard keys according to the defined policy (e.g. LRU). When
Redis is used as a cache the used setting is allkeys-lru.

Software Engineering School

6

Client Management & Limits

© EInnovator.org

http://www.einnovator.org/

Redis Admin

Setting notify-keyspace-events is used to specify which
server events produce message in keyspace and keyevent
channels (__keyspace@<db>__:key cmd,
__keyevent@<db>__:cmd key).

Table below summarizes Redis configuration parameters
related with clients and connection management and limits.

Clients Config Param Description [default]

maxclients <n> [10000]

maxmemory <bytes> Max memory to use

maxmemory-policy
<noeviction | volatile-lru |
allkeys-lru | volatile-random |
allkeys-random | volatile-ttl>

Key discarding & memory release
policy [noeviction]

maxmemory-samples <n> Key samples for LRU [5]

lua-time-limit <ms> Max executation time of script before
warning [5000]

activerehashing <yes|no> Active rehash main hash table [yes]

hash-max-ziplist-entries [512]
hash-max-ziplist-value [64]
list-max-ziplist-size [2]
set-max-intset-entries [512]
zset-max-ziplist-entries [128]
zset-max-ziplist-value [64]
hll-sparse-max-bytes [3000]

Limits to us compressed (Zip)
representation for data-structures

list-compress-depth <k> List compression strategy [0]

notify-keyspace-events Notification policy for server events

<policy> [“”]

Redis can be configured with a basic level of security, with
parameter requirepass defining a password that client need to
specify with command AUTH. When running in untrusty
environments the directive rename-command in the
configuration file can be used to prevent intruder to issue a
command. Table below summarizes Redis configuration
parameters and directives related with security.

Security Conf Param Description [default]

requirepass <passwd> Password to authenticate

rename-command
<command> <newname>

Rename command

• Redis Project home page: http://redis.io/

• Redis sample configuration file:
https://raw.githubusercontent.com/antirez/redis/3.2/redis.conf

• Redis sample sentinel configuration file:
https://raw.githubusercontent.com/antirez/redis/3.2/sentinel.conf

About the Author
Jorge Simão is a software engineer and IT Trainer, with
two decades long experience on education delivery both in
academia and industry. Expert in a wide range of
computing topics, he his an author, trainer, and director
(Education & Consulting) at EInnovator. He holds a B.Sc.,
M.Sc., and Ph.D. in Computer Science and Engineering.

Redis Training
Redis Administration course teaches how to install,
manage, and configure Redis. Covers topics such as Redis
master-slave replication, high-availability, and Redis cluster.
Book for a training event in a date&location of your choice:
www.einnovator.org/course/redis-administration

Redis Development course teaches how build applications
that use Redis, with extensive coverage of Spring Data
Redis (Java track) & C# drivers (.Net track).
Book for a training event in a date&location of your choice:
www.einnovator.org/course/redis-development

++ QuickCards » EInnovator.org
» Java 8

» Spring Container, Spring MVC, Spring WebFlow

» RabbitMQ, Cloud Foundry, Spring XD

» and much more...

++ Courses » EInnovator.org
» Core Spring, Spring Web, Enterprise Spring

» RabbitMQ, CloudFoundry

» BigData with Hadoop & Spark

» and much more...

EInnovator – Software Engineering School

EInnovator.org offers the best Software Engineering resources and education, in partnership with the most
innovative companies in the IT-world. Focusing on both foundational and cutting-edge technologies and
topics, at EInnovator software engineers and data-scientists can get all the skills needed to become top-of-
the-line on state-of-the-art IT professionals.

Training – Bookings & Inquiries
training@einnovator.org

Consultancy – Partnerships & Inquiries
consulting@einnovator.org

General Info
info@einnovator.org

Software Engineering School

Copyright © 2016 EInnovator.org. All rights reserved.

7

Redis Security

Resources

Contacts

http://www.einnovator.org/course/redis-development
http://www.einnovator.org/course/redis-administration
http://www.jpalace.org/account/jorge.simao
https://raw.githubusercontent.com/antirez/redis/3.2/redis.conf
https://raw.githubusercontent.com/antirez/redis/3.2/redis.conf
http://redis.io/
mailto:info@jpalace.org
mailto:feedback@jpalace.org
mailto:training@jpalace.org
http://www.jpalace.org/
http://www.jpalace.org/

