
© EInnovator.org

S
p

ri
n

g
 S

e
cu

ri
ty

Spring Security is a security framework for Java
applications, based on the Spring Framework. Spring
Security is very flexible supporting a wide range of
authentication protocols (e.g Form, Basic, OpenID), and
several access-control mechanisms – with security
policies defined at the level of the URL (in a web
environment), at the level of the Java method, or ACLs for
fine-grained resource protection. Access rules can be
expressed also in several ways including simple role and
group based-access, and SPEL scripts. Spring Security
provides mostly a self-contained security solution, making
applications and configuration fully portable across JEE
application servers, Servlet containers, and other
deployment environments.

Spring Security supports the same configuration styles
as Spring Framework, including Java configuration
classes, annotation-driven configuration, and XML
configuration with namespace support. Dependencies for
Spring Security are organized in several modules,
including: core abstractions, web-specific, and XML
configuration. Modules for additional authentication
models are also provided (e.g. LDAP, CAS, OpenID,
Kerberos, OAuth2, etc).

Spring Security architecture consists of two main sub-
systems – authentication and authorization (aka. access-
control). The authentication sub-system is responsible to
establish the validity of the client (principal) credentials
(e.g. username/password, or access-token). An
AuthenticationManager component is responsible to
coordinate one or more AuthenticationProvider, each
implementing one authentication approach. Access-
control is coordinated by an AccessDecisionManager
component. The information defining the the identity and
authorities of a principal are stored in a contextualized
object SecurityContext, which works an integration data-
structure for the two main sub-systems.

Enforcing a security policy always involves an act of pre-
emption – performed by an interceptor – to check if

access is allowed. To implement URL based security
policies in a web environment a Filter based solution is
used to perform the interception. For method level
access-control a Spring AOP proxy and around-advice is
used. Figure below depicts a generic representation of
Spring Security architecture.

In a web environment, Spring Security uses a pipeline of
collaborating Filters each responsible for part of the
overall security solution. To simplify configuration steps, a
“master” Filter of class FilterChainProxy is responsible
to assemble the pipeline. One of the created Filters –
FilterSecurityInterceptor, is responsible to preempt
threads and interact with the AccessDecisionManager.
Filter UsernamePasswordAuthenticationFilter, used in
Form-based authentication, is responsible to
authenticate the principal by extracting the credentials
from a request and by interacting with the
AuthenticationManager. Figure below depicts the
Spring Security Filter pipeline in a web environment.

Spring Security can be configured both with Java and
XML. In Servlet 3.0+ containers, is possible to do all the
configuration in Java (i.e. no need for web.xml file). The
annotation @EnableWebSecurity is used in a Java

Software Engineering School

+
+

 Q
u

ic
k

G
u

id
e

s
 »

 E
In

n
o

v
a

to
r.

o
rg

12

Spring Security Overview

Spring Security Architecture

Spring Security Configuration

C
o

n
te

n
t

» Spring Security Architecture
» Spring Security Configuration
» Authentication & Authorization
» Form-Based Authentication
» Basic&Digest Authentication
» URL-Based Access-Control
» Method-Level Security & ACL

Jorge Simão, Ph.D.

Spring Security

http://www.einnovator.org/
http://www.einnovator.org/quickguide

Spring Security

@Configuration class to bootstrap the configuration of Spring
Security in a web environment. This creates the
FilterChainProxy filter as a Spring managed component
(bean) named springSecurityCheck, which in turn creates the
security filter pipeline.

Customization of Spring Security can be done by making the
configuration class annotated with @EnableWebSecurity
implement the interface WebSecurityConfigurer, or more
conveniently extend class WebSecurityConfigurerAdapter,
and overrides the callback methods. Method
configureGlobal() is used to configure global elements, such
as one or more AuthenticationProvider and
UserDetailsService. Method configure() is use to configure
the HTTP specific elements, such as the selection of the
authentication protocol to use and URL based access-control
rules.

Similar configuration can be done in XML using the
<security:*> namespace. Element <http> defines the HTTP-
specific configuration. Element <authentication-manager>
encapsulates the configuration for user authentication.

» Example: Configure Spring Security for WebApps [Java]

@EnableWebSecurity
@Configuration
public class WebSecurityConfig extends
WebSecurityConfigurerAdapter {

 @Autowired
 public void configureGlobal(AuthenticationManagerBuilder
auth) throws Exception {
 auth.inMemoryAuthentication()
 .withUser("user")
 .password("userpa$$").roles("USER").and()
 .withUser("admin")
 .password("adminpa$$").roles("USER", "ADMIN");
 }

 @Autowired
 public void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .anyRequest().authenticated().and()
 .formLogin();
 }
}

» Example: Configure Spring Security for WebApps [XML]

<http>
 <intercept-url pattern="/static/**" access="permitAll"/>
 <intercept-url pattern="/login" access="permitAll"/>
 <intercept-url pattern="/" access="permitAll"/>
 <intercept-url pattern="/**" access="authenticated"/>
 <form-login />
</http>

To integrate the FilterChainProxy in a Servlet container, a
container managed filter of type DelegatingFilterProxy
name should be configured with name springSecurityCheck.
In a Servlet 3.0+ environment, this can be done by defining a

class extending AbstractSecurityWebApplicationInitializer.
Alternatively, the DelegatingFilterProxy can be defined
explicitly in the web.xml application descriptor file.

» Example: Configure DelegatingFilterProxy [Java]

public class SecurityWebApplicationInitializer
extends AbstractSecurityWebApplicationInitializer {}

» Example: Configure DelegatingFilterProxy [XML]

<filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>org.sf.web.filter.DelegatingFilterProxy</filter-class>
</filter>
<filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Table below summarizes Spring Security annotations. Some
of these annotations will be covered in following sections.

Parameter Description

@EnableWebSecurity Enable Java-based configuration

@EnableGlobalMethodSe
curity

Enable method-level security

@EnableGlobalAuthenti
cation

Enable Java-based configuration of
AuthenticationManager

@Secured Define role-based access-control for
method

@RolesAllowed Define role-based access-control for
method [JSR-250 annotation]

@PreAuthorize Define role-based access-control for
method with SPEL expression

@PostAuthorize Define role-based access-control for
method with SPEL [check done on return]

Form-based authentication involves using a HTML form to
submit username–password credentials as form parameters.
Method formLogin(), in HttpSecurity, is used to enable
FORM authentication. Equivalently, XML element <form-
login> can be used for the same purpose.

By default, Spring Security auto-generates an HTML login
form. To customize the login form, the method loginPage() can
be used when setting up HttpSecurity. When done with XML
configuration, the attribute loginPage should be used. When
providing custom HTML login forms, the action (URL) attribute
should match the setting specified in formLogin() or <form-
login>, or /login for the default setting. Additionally, the form
parameters names username and password should be used
for the credentials input fields (as default).

Software Engineering School

2

Form-Based Autentication

© EInnovator.org

http://www.einnovator.org/

Spring Security

» Example: Configuring the Login Form Page

public void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .anyRequest().authenticated().and()
 .formLogin().loginPage("/login").permitAll();
}

» Example: A Custom HTML Login Form [JSP]

<c:url value="/login" var="loginUrl"/>
<form action="${loginUrl}" method="post">
 <c:if test="${not empty param.error}"><p>Try Again</p></c:if>
 <p><label>Username</label> <input name="username"/></p>
 <p><label>Password</label> <input type="password"
name="password"/></p>
 <button type="submit">LOGIN</button>
</form>

When a user completes an interaction session, it is desirable
logout the user to clear the session state, including the
SecurityContext. This is done by configuring a LogoutFilter,
that handler HTTP POST request to a logout URL – /logout,
by default. This is configured in Java with method logout(), or
in XML with element <logout />. After logout the user is
redirect to a logout URL – the home page /, by default.

» Example: Configuring Logout Filter [Java]

protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests(). … .and()
 .formLogin().loginPage("/login").permitAll().and()
 .logout()
 .logoutUrl("/logout")
 .logoutSuccessUrl("/thankyou");
}

» Example: Configuring Logout Filter [XML]

<http>
 <form-login />
 <logout logout-success-url="/thankyou"/>
</http>

An URL-based access-control policy is defined using the fluent
API made available by calling authorizeRequests() in
HttpSecurity. Each access-rule defines a pattern to match in
the request URL, and optionally the HTTP method, followed by
required authorities. Method antMatchers() is used to defined
rules using Ant-like expressions. Regular expressions can
also be used with method regexMatchers().

Similar configuration can be done in XML by using element
<intercept-url>, inside <http>, to define an access-rule. By
default, SPEL script expression should be used to express the
required access-policy and authorities. Alternatively, role-
based access rules can be defined, by setting attribute use-
expresions=”false” in element <http>. Access rules, both in
Java and XML, are matched in order. So the more specific

rules should come earlier, followed by the more general rules.

» Example: Defining Access-Control Policy Rules [Java]

public void configure(HttpSecurity http) throws ... {
 http.authorizeRequests()
 .antMatchers("/static/**", "/login", "/").permitAll()
 .antMatchers("/admin/**").hasRole("ADMIN")
 .anyRequest().authenticated().and()
 .formLogin().loginPage("/login").permitAll();
}

» Example: Defining Access-Control Rules w/ SPEL [XML]

<http use-expressions="true" pattern="**">
 <intercept-url pattern="/static/**" access="permitAll"/>
 <intercept-url pattern="/login" access="permitAll"/>
 <intercept-url pattern="/" access="permitAll"/>
 <intercept-url pattern="/admin/**"
access="hasRole('ADMIN')"/>
 <intercept-url pattern="/**" access="authenticated"/>
 <form-login />
</http>

» Example: Role-Based Access-Control Rules [XML]

<http use-expressions="false" pattern="/api/**">
 <intercept-url pattern="/admin/**" access="ROLE_ADMIN"/>
 <intercept-url pattern="/**" method="POST"
access="AUTHENTICATED"/>
 <form-login />
</http>

The descriptor of type AuthenticationManagerBuilder in
method configureGlobal() provides a fluent API to configure
the AuthenticationManager. An AutenticationProvider can
be defined to use a service or repository of user credentials
and authorities of type UserDetailsService. The credentials
returned by the service are compared with the ones send by
the user over the wire to be validated and perform the
authentication.

Method inMemoryAuthentication() creates an
AutenticationProvider with an in-memory repository of users.
This is suitable to define ad-hoc (made up) users for
development purposes. For production environments a
database is more suitable. Method jdbcAuthentication()
creates an AutenticationProvider which uses user repository
for relational database and configures it with a JDBC
DataSource.

As a security precaution, user passwords should be stored
encrypted in the database. The encryption strategy used when
the password was stored (on user registration or password
change) should be applied also to the password received
during authentication. The method passwordEncoder() allows
to specify the encryption strategy to use via a Password
Encoder. The strategy StandardPasswordEncoder uses
SHA-256 algorithm for encryption. It also supports password

Software Engineering School

3

Web/URL Based Access-Control

User Databases

© EInnovator.org

http://www.einnovator.org/

Spring Security

padding with an additional “entropy” bytes (salt).

» Example: Defining an InMemory UserDetailsService

@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth)
throws Exception {
 auth.inMemoryAuthentication()
 .withUser("user").password("userpa$$").roles("USER").and()
 .withUser("admin").password("adminpa$$").roles("USER",
"ADMIN")

.and().passwordEncoder(
 new StandardPasswordEncoder("$ecret-key99$"));
}

» Example: Defining a JDBC UserDetailsService

@Autowired
DataSource dataSource;

@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth)
throws Exception {
 auth.jdbcAuthentication().dataSource(dataSource)
}

The JDBC UserDetailsService assumes a database schema
with tables USERS and AUTHORITIES. Table below show the
default SQL queries executed. This queries can also be
changed with setters in the fluent API. Policies based on group
membership and group authorities are also supported.

Query Purpose & Setter SQL Query [default]

Find user credentials by
username.
usersByUsernameQuery()

select username,password,enabled
from users where username = ?

Find user authorities by username
(e.g. roles).
authoritiesByUsernameQuery()

select username,authority from
authorities where username = ?

Find user's groups authorities by
username (e.g. roles)
groupAuthoritiesByUsername()

select g.id, g.group_name,
ga.authority from groups g,
group_members gm,
group_authorities ga where
gm.username = ? and g.id =
ga.group_id and g.id = gm.group_id

Similar configuration of the AuthenticationManager and
AuthenticationProvider, can be done in XML using elements
<authentication-manager> and <authentication-provider>.
Element <user-service> defines an
InMemoryUserDetailsService. Element <jdbc-user-service>
defines a JdbcUserDetailsService.

» Example: Defining a JDBC UserService [XML]

<authentication-manager>
 <authentication-provider>
 <jdbc-user-service data-source-ref="dataSource" />
 <password-encoder hash="sha-256">
 <salt-source system-wide="$super$ecret123$"/>
 </password-encoder>
 </authentication-provider>
</authentication-manager>

» Example: Defining an InMemory UserService [XML]

<authentication-provider>
 <user-service>
 <user name="user" password="us$r" authorities="ROLE_USER" />
 <user name="admin" password="$$" authorities="ROLE_ADMIN" />
 </user-service>
</authentication-provider>

Applications often need to combine different configuration
options, such as using different types of authentication, for
different types of endpoints (e.g. using Form-based
authentication for web endpoints, and BASIC authentication for
REST-WS endpoints). This can be done in Java by using more
than one @Configuration class, and using a URL prefix
matcher with method HttpSecurity.antMatcher(). Annotation
@Order can be used to guarantee that more specific matchers
are evaluate first. In XML, same result is achieved using the
attribute pattern in (multiple) <http> elements.

When alternative configurations are to be used in different
environments, environment profiles should be used (e.g. using
InMemoryUserDetailsService in development, and a
JdbcUserDetailsService in production).

» Example: Combined Configuration Policies [Java]

@Configuration
@Order(1)
public static class ApiWebSecurityConfigurationAdapter extends
WebSecurityConfigurerAdapter {
 protected void configure(HttpSecurity http) throws ... {
 http.antMatcher("/api/**")
 .authorizeRequests().and()
 .httpBasic();
 }
}

@Configuration
public static class FormLoginWebSecurityConfigurerAdapter
extends WebSecurityConfigurerAdapter {
 @Override
 protected void configure(HttpSecurity http) throws ... {
 http.authorizeRequests().and()

 .formLogin();
}

}

» Example: Combined Configuration Policies [XML]

<http pattern="/login" security="none" />
<http pattern="/api/**">
 <intercept-url pattern="/**" access="AUTHENTICATED"/>
 <basic-auth />
</http>
<http pattern="/**">
 <intercept-url pattern="/admin/**" access="ROLE_ADMIN"/>
 <form-login />
</http>

Software Engineering School

4

Combined / Alternative Configuration

Method-Level Access-Control

© EInnovator.org

http://www.einnovator.org/

Spring Security

Spring Security allows access-control policies to be defined
at the level of the Java method. This is implementing by
wrapping the Spring beans with protected methods into a
proxy that calls a security advice. The advice interacts with the
AccessDecisionManager in a way comparable to what the
SecurityInterceptorFilter does for URL-based policies. The
annotation @EnableGlobalMethodSecurity enables the
creation of the security advices. The @Secured annotation is
used at the method or class level to define the access-policy
for intercepted methods. The value() attribute of @Secured
specifies a list of roles (authorities) that the Principal may hold
so that threads running on its behalf are allowed to invoke the
method. If the security check fails a NotAuthorizedException
is thrown. The attribute securedEnable of annotation
@EnableGlobalMethodSecurity should also be set to true.

Spring Security also supports the standard JSR-250
annotation @javax.annotation.RolesAllowed, by setting
attribute js250Enabled on @EnableGlobalMethodSecurity to
true. For SPEL expressions as access-rules use annotation
@PreAuthorize (or @PostAuthorized), and set attribute
prePostEnabled of @EnableGlobalMethodSecurity to true.

» Example: Enabling Method-Level Security

@EnableGlobalMethodSecurity(securedEnabled = true,
jsr250Enabled=true, prePostEnabled=true)
@Configuration
public class MethodSecurityConfig {
}

» Example: A Secured Service Interface

public interface OrderService {
@Secured("IS_AUTHENTICATED")
public Order submit(Order Order);

@Secured("IS_AUTHENTICATED_ANONYMOUSLY")
public Order getOrder(Long id);

}

Method-level security can also be configured in XML with
element <global-method-security>. Since method-level
security is based on Spring AOP run-time, AspectJ-style
point-cut expressions can be used to secure many methods
declaratively.

» Example: Enabling Method Security [XML]

<global-method-security secured-annotations="enabled"
 jsr250-annotations="enabled" pre-post-annotations="enabled" />

» Example: Securing Methods w/ Point-Cut Expressions

<global-method-security>
 <protect-pointcut access="ROLE_ADMIN"
 expression="execution(* com.myapp.admin.*Service.*(..))"/>
</global-method-security>

For non-interactive applications and HTTP endpoints, such as
REST-WS, form-based authentication is not suitable. In these
scenarios, requests should include the user credentials in a
request header – often the HTTP Authorization header.
Spring Security has support for several protocols that follow
this approach, such as HTTP BASIC and DIGEST
authentication.

BASIC authentication is a simple protocol, specified in RFC-
1945, that sends credentials unencrypted in format
Encode64[username:password]. BASIC authentication is
particularly simple to configure in Spring Security, both in
Java and XML configuration, since there is fluent API and XML
namespace support. Method httpBasic() configures a Filter
that extract the credentials from the Authorization header
and perform the authentication. XML element <http-basic>
has the same effect. Note that BASIC authentication is
considered unsecure, like FORM authentication, unless the
credentials are sent trough a secured channel (i.e. encrypted
with a SSL/TLS connection).

DIGEST authentication, specified in RFC-2617 and RFC-2069,
fixes some of the vulnerabilities of BASIC authentication by
sending credentials encrypted (with MD5 algorithm).
Configuration in Spring Security is more explicit since there is
no fluent API or XML namespace support. A Filter of type
DigestAuthenticationFilter should be configured to extract
and validate the credentials. A bean of type
DigestAuthenticationEntryPoint should also be configure –
which is called when authentication is required to access a
protected resource, to send the correct HTTP status code (401
Unauthorized), and set the WWW-Authenticate header. Note
that in DIGEST authentication user credentials should be
stored in plain format, or encrypted in MD5. Note also that
when using a secured channel there is no need to use DIGEST
authentication.

» Example: Configuring Basic Authentication [Java]

protected void configure(HttpSecurity http) throws Exception {
 http.antMatcher("/api/**")
 .authorizeRequests(). … .and()
 .httpBasic();
}

» Example: Configuring Basic Authentication [XML]

<http use-expressions="false" pattern="/api/**">
 <intercept-url pattern="/admin/**" access="ROLE_ADMIN"/>
 <intercept-url pattern="**"
access="IS_AUTHENTICATED_ANONYMOUSLY"/>
 <http-basic />
</http>

» Example: Configuring Digest Authentication [XML]

<bean id="digestFilter"
class="org.sf.sec.web.auth.www.DigestAuthenticationFilter"
 p:userDetailsService-ref="jdbcDaoImpl"

Software Engineering School

5

Basic & Digest Authentication

© EInnovator.org

http://www.einnovator.org/

Spring Security

 p:authenticationEntryPoint-ref="digestEntryPoint"
 p:passwordAlreadyEncoded="true" p:userCache-ref="userCache"/>

<bean id="digestEntryPoint"
class="org.sf.sec.web.auth.www.DigestAuthenticationEntryPoint"
 p:realmName="MyApp" p:key="$erver$secret#XYZ"
 p:nonceValiditySeconds="10"/>

To be secure, FORM and BASIC authentication require
sending credentials trough a secured encrypted SSL/TLS
connection. Secured connections can also be used to encrypt
payload data and increased privacy. Spring Security can be
configured to force the use of a secured channel, by setting
attribute requires-channel=”https” in element <intercept-
url>. Although this can usually also be done via direct
configuration of the Servlet container, doing it with Spring
Security increases the portability of the application. Non-
default port-mappings can be defined with element <port-
mapping>.

» Example: Forcing HTTPS Secured Connection on Login

<http use-expressions="true" pattern="**" >
 <intercept-url pattern="/login" access="permitAll" requires-
channel="https"/>
 <intercept-url pattern="/static/**" access="permitAll"/>
 <intercept-url pattern="/" access="permitAll"/>
 <intercept-url pattern="/**" access="authenticated"/>
 <form-login />
 <port-mappings>
 <port-mapping http="8080" https="9443"/>
 </port-mappings>
</http>

Remember-me (Cookie) Authentication allow users to be
automatically logged-in long after a session is closed by the
server. Spring Security support two strategies for
implementing this kind of authentication approach. In both
approaches, a token is generated and shared with the user-
agent (browser) as a cookie after login. In the simplest
approach, the token is created by appending user info and an
encrypted digest. This is configured in XML with element
<remember-me> and setting the attribute key to a secret
value – only know by the server, that makes the token
unforgeable by malevolences third-parties (hackers). When a
browser present the cookie with a valid token, the user is
authenticated.

The more sophisticated approach to remember-me
authentication uses a database to keep track of issued tokens.
Each token is valid for a single request, at which point a new
one is generated and the previous one removed. Each token

also belongs to a token-series, whose value is also included in
the cookie. This allows Spring Security to detect when a
token was stolen, and make a complete token-series to be
invalidated and a new one started. This approach is configured
in XML by setting attribute data-source-ref.

» Example: Config Hash-Based Remember-me Auth

<http>
 <intercept-url pattern="/login" access="permitAll"/>
 <intercept-url pattern="**" access="authenticated"/>
 <form-login />
 <remember-me key="$erver$super$secret$$"/>
</http>

» Example: Config Persistente Remember-me Auth

<http>
 ...
 <form-login />
 <remember-me data-source-ref="dataSource"/>
</http>

For use-cases where fine-grained access control to individual
objects is required, Spring Security provides an out-of-the-
box API and services for Access-Control Lists (ACL) based
authorization (e.g. to authorize access based on resource
ownership). An AclService bean provides an API to retrieve,
create, update, and manage Acl. The default implementation
JdbcMutableAclService uses a DataSource with a schema
with four tables to describe ACL entrie – ACL_SID,
ACL_CLASS, ACL_OBJECT_IDENTITY, ACL_ENTRY. Each
entry contained in an Acl defines which permissions (modelled
as an array of bits) a user (modelled a PrincipalSid) can
perform on an application object (modelled as as
ObjectIndentity). The method Acl.isGranted() is use to
check for permissions.

» Example: Checking ACL for Object Read Access

@Autowired
MutableAclService aclService;

@GetMapping("/order/{id}")
public String getOrder(@PathVariable("id") Long id, Model
model, Principal principal) {
 ObjectIdentity oi = new ObjectIdentityImpl(Order.class, id);
 Sid sid = new PrincipalSid(principal.getName());
 Permission p = BasePermission.READ;
 try {
 MutableAcl acl = (MutableAcl) aclService.readAclById(oi);
 if (!acl.isGranted(singletonList(p), singletonList(sid),
false)) {
 throw new AccessDeniedException("Not in ACL!");
 }
 } catch (NotFoundException nfe) {}
 Order order = orderService.getOrder(id);
 model.addAttribute("order", order);
 return "order/show";
}

Software Engineering School

6

Secure Encrypted Channels

ACL – Access-Control Lists

RememberMe (Cookie) Authentication

© EInnovator.org

http://www.einnovator.org/

Spring Security

Cross-Site Request Forgery (CSRF) is a category of attacks
where a malicious website, disguising its intent, forwards the
user to another genuine website – where the user might have
been recently logged in – with a request to update data (e.g.
via an HTTP POST, PUT, DELETE). In Spring Security, this
can be prevented by including a HTTP request parameter or
cookie that the attacker can not guess. By default, Spring
Security generates the CSRF token automatically and saves it
under request-scoped parameter _csrf. HTML requests
making updates – such as a login credentials submission –
should include this as an hidden parameter. When using the
<form:from> tag, provided in the JSP Form taglib of Spring,
this is done automatically. Disabling or fine configuration of
CSRF can be done in Java with method csrf() or in XML with
element <csrf>.

» Example: Adding CSRF Token as Hidden Form Param

<c:url value="/login" var="loginUrl"/>
<form action="${loginUrl}" method="post">
 ...
 <input type="hidden" name="${_csrf.parameterName}" value="$
{_csrf.token}"/>
 <button type="submit">LOGIN</button>
</form>

Spring Security provides additional modules and extensions
that can be for authentication and authorization, such as:
LDAP external authentication, OpendID based-authentication,
Servlet container Integration, Kerberos, OAuth2. Developers
can also create new extensions by providing alternative
implementation to the framework interfaces defined as Spring
beans. Spring Social extensions allow users to login in
application using credentials from a variety of social web-sites
(e.g. Google, Facebook, Twitter).

Custom filters can also be added to the filter pipeline setup by
default by Spring Method. This is one with method
HttpSecurity.addFilter() or XML element <custom-filter>.

• Spning Security Referenc Manual – http://docs.spring.io/spring-
security/site/docs/4.2.0.BUILD-SNAPSHOT/reference/htmlsingle/

• Spring Security Project Page – http://projects.spring.io/spring-
security/

About the Author
Jorge Simão is a software engineer and IT Trainer, with
two decades long experience on education delivery both in
academia and industry. Expert in a wide range of
computing topics, he his an author, trainer, and director
(Education & Consulting) at EInnovator. He holds a B.Sc.,
M.Sc., and Ph.D. in Computer Science and Engineering.

Core Spring & Spring Security Training
Core Spring is Pivotal's official four-day flagship Spring
Framework training. In this course, students build a Spring-
powered Java application that demonstrates the Spring
Framework and other Spring technologies like Spring AOP
and Spring Security in an intensely productive, hands-on
setting. Completion of this training prepares participants to
take a certification exam and become a Spring Certified
Professional.
Book now an on-site training for date&location of your
choice: www.einnovator.org/course/core-spring

++ QuickGuides » EInnovator.org
» Spring Dependency-Injection, Spring MVC

» RabbitMQ, Redis

» Cloud Foundry, Spring Cloud

» and much more...

++ Courses » EInnovator.org
» Spring Web, Enterprise Spring

» RabbitMQ, Redis, CloudFoundry

» BigData and Hadoop, Spring XD, Spark

» and much more...

EInnovator – Software Engineering School

EInnovator.org offers the best Software Engineering resources and education, in partnership with the most
innovative companies in the IT-world. Focusing on both foundational and cutting-edge technologies and
topics, at EInnovator software engineers and data-scientists can get all the skills needed to become top-of-
the-line on state-of-the-art IT professionals.

Training – Bookings & Inquiries
training@einnovator.org

Consultancy – Partnerships & Inquiries
consulting@einnovator.org

General Info
info@einnovator.orgCopyright © 2016 EInnovator.org. All rights reserved.

Software Engineering School

7

Extensions to Spring SecurityCross-Site Request Forgery

Resources

Contacts

http://www.jpalace.org/
http://www.einnovator.org/course/core-spring
http://www.jpalace.org/account/jorge.simao
http://projects.spring.io/spring-security/
http://projects.spring.io/spring-security/
http://docs.spring.io/spring-security/site/docs/4.2.0.BUILD-SNAPSHOT/reference/htmlsingle/
http://docs.spring.io/spring-security/site/docs/4.2.0.BUILD-SNAPSHOT/reference/htmlsingle/
mailto:info@jpalace.org
mailto:feedback@jpalace.org
mailto:training@jpalace.org
http://www.jpalace.org/
http://www.jpalace.org/course/java

