
© EInnovator.org

S
p

ri
n

g
 T

es
ti

n
g

Spring Framework provides a well-rounded number of
mechanisms to support application testing according to
the principles of test-driven development. Spring Test
framework automatically setups the Spring
ApplicationContext to be used during tests, and allows
dependency-injection to be applied to test classes.
Integration with JUnit4 and TestNG testing frameworks is
supported, as well as standalone and web application
testing. Annotation-driven meta-data can be use to tailor
the test configuration and actions performed during the
execution of tests using POJO test classes. Specific
mechanisms are available to test transactional database
code and avoid interference of test methods. For web-
development and Spring MVC applications, out-of-the-
container testing is supported to increase developer
productivity and simplify the automation of integration
testing pipelines.

To get started with Spring Testing module the
Maven/Gradle dependency spring-test should be
imported. Alternatively, for Spring Boot applications, use
dependency spring-boot-starter-test, which also imports
JUnit4 and Mockito mocking framework.

» Example: Spring Test Maven Dependency Import

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>4.3.3.RELEASE</version>
</dependency>

Example: Importing Spring Boot Test Starter

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <version>1.4.1.RELEASE</version>
</dependency>

Test-Driven development is the practice of creating
dedicated test classes as separated project artefacts and
running them to test the validity of business code.

This is considered a recommended/mandatory best-

practice in order to build reliable software. The test
classes allow for the automation and repeatability of the
testing procedure, which is essential to streamline
development – specially when complexity grows and
code is continuously being refactored, as is the case with
agile software development methodologies.

The different types of software tests performed in
enterprise systems are frequently classified in the several
categories. Spring Test framework give support most
strongly for to integration and out-of-the-container tests.

• Unit Tests – Testing of a single unit of functionality
such as a Java class or method. Dependency are
expected to be kept as minimal as possibles.

• Integration Tests – Testing of multiple components
working together as an integrated sub-system.
Simplifies the testing of components and sub-systems
as non-functional requirements might be ignore (e.g.
performance optimization and security).

• Out-of-the-Container Tests – Web application and
REST-WS are tested in with full configuration without
requirement deployment on a container.

• End-to-End Tests – Client-Server interaction Tests.

• User Acceptance Tests – User-centric tests, such as
UI features and overall user-experience.

• Performance, Scalability, Reliability Tests – Testing
the behaviour of the system under conditions of stress,
such as high-load and failing components.

• Security Tests – Checks for the possibility of system
intrusions and user exploits.

Spring Test integrates with JUnit4 in a seemly way, by
using JUnit4 annotation @RunWith to specify a Runner
class (driver) for the tests. This is the class that is
responsible to create and initialize instances of the test
class and call the test methods. Spring provide the class
SpringJUnit4ClassRunner for this purpose, or since
version 4.3 the shorter alias class SpringRunner. The
use of the @RunWith annotation allow for the test

Software Engineering School

+
+

 Q
u

ic
k

G
u

id
e

s
 »

 E
In

n
o

v
a

to
r.

o
rg

13

Spring Test Overview

Test-Driven Development

Types of Tests

JUnit4 & TestNG Integration

C
o

n
te

n
t

» Spring Testing Overview
» Test-Driven Development
» Unit Tests & Integration Tests
» JUnit4 Integration
» Database Transactional Tests
» Web & Spring MVC Testing
» Spring Security Testing

Jorge Simão, Ph.D.

Spring Testing

http://www.einnovator.org/
http://www.einnovator.org/quickguide

Spring Testing

classes to defined as POJOs. Alternatively, JUnit4 tests
classes can extend the provided abstract class
AbstractJUnit4SpringContextTests, or when running
transactional methods the class
AbstractTransactionalJUnit4SpringContextTests. With
either approach the same set of features of the Spring Test
framework is or can be enabled.

Spring Test also integrates with TestNG testing framework. In
this case, test class should extend the provided abstract class
AbstractTestNGSpringContextTests. These abstract
classes, both for JUnit4 and TestNG, define and initialize
several protected fields – such as the underlying
ApplicationContext – that can be used by test classes
programmatically (e.g. in a @Before setup method in the case
of JUnit4).

» Example: Running JUnit4 Tests with a Spring Runner

@RunWith(SpringJUnit4ClassRunner.class)
public class OrderServiceTests {

 @Test
 public void cancelOrderTest() { ... }
}

The Spring Test framework automatically starts a Spring
ApplicationContext that creates, initializes, and manages
application components (beans) for the execution of the tests.
The annotation @ContextConfiguration defines which
configuration resources define the application components
(beans) to use for tests. The value() or locations() attribute
specifies XML bean files to load, while the classes() attribute
specifies @Configuration classes or component classes with
stereotype annotations (e.g. @Component, @Service,
@Repository, @Controller, and @RestController). Static
inner @Configuration classes are also searched inside the
test class. If no configuration resource is specified in either of
these ways, a default XML file is assumed with name
TestClass-context.xml.

The different types of configuration resources are exclusive. To
combine them, a single type should be used to bootstrap the
ApplicationContext and make an import a posteriori (e.g. if
bootstrapping with XML files, the annotation
@ComponentScan can be used; if bootstrapping with
@Configuration classes use @ImportResource to load XML
files).

» Example: Testing with XML Configuration Files

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations=

 {"app-config.xml", "test-config.xml"})
public class OrderServiceTests {
 ...
}

» Example: Testing with Java Config Classes

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes=
 {AppConfig.class, TestConfig.class})
public class OrderServiceTests {
 ...
}

» Example: Testing with Inner Java Config Classes

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class OrderServiceTests {
 @Configuration
 @Import(AppConfig.class)
 static class TestConfig {

 @Bean DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()

 .setType(EmbeddedDatabaseType.HSQL)
 .addScript("classpath:schema.sql")
 .addScript("classpath:test-data.sql")
 .ignoreFailedDrops(true)
 .build();
 }
 }

 @Test
 public void cancelOrderTest() { ... }
}

Spring Test further facilitates testing by allowing dependency-
injection to be applied to instance of the test classes – e.g. via
the @Autowired, @Inject, @Resource annotation. This is
useful to inject configured beans such as the class under test –
thus, eschewing the need for a JUnit4 @Before annotated
method, in most cases

» Example: Injecting a Service Class for Testing

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = TestConfig.class)
public class OrderServiceTests {
 @Autowired
 OrderService service;

 @Test
 public void submitOrder0Test() {
 Order order = new Order(1L,100.0);
 Confirmation conf = service.submit(order);
 assertNotNull(conf);
 }
}

When a test class inherits from another class, any
configuration resources defined with @ContextConfiguration
in the parent class (or any ancestor class) are also considered.
For cases where the test class should override the base
definitions, set attribute inheritLocations()=false.

Table below summarizes the annotations provided by Spring
Test to control tests setup and execution.

Software Engineering School

2

© EInnovator.org

Test ApplicationContext

http://www.einnovator.org/

Spring Testing

Annotation Description

@ContextConfiguration Define configuration resource for
ApplicationContext (XML or Java)

@WebAppConfiguration Denotes a webapp test using an
WebApplicationContext

@ActiveProfiles Define bean profile(s) to activate

@TestPropertySource Load settings from a property file into
the environment before test execution

@DirtiesContext Mark test method as having side-
effects – modifying beans state.

@ContextHierarchy Define a hierarchy of
ApplicationContext

@TestExecutionListeners Install custom test listeners

@BootstrapWith Tailor framework with complete set of
custom strategies

Table below summarizes the annotations provided by Spring
Test specifically to be used with JUnit4.

Annotation Description

@IfProfileValue Conditionally ignore test method

@ProfileValueSourceConf
iguration

Alternative source of settings to be
evaluated in @IfProfileValue

@Timed Max. accepted time for valid test to run

@Repeat Run test method N times

When test classes define more than one test method, the
execution of the tests needs to be carefully considered since a
test method that has side-effects may interfere with the
behaviour of other test methods (e.g. by modifying the state of
a stateful singleton bean). To mitigate for this, the annotation
@DirtiesContext can be used in a test method to force Spring
to recreate the ApplicationContext, rather than use a cached
instance, while setting up the execution of the following test
method(s).

» Example: Marking Test Methods for Side-Effects

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes=TestConfig.class)
public class OrderServiceTests {
 @Autowired
 OrderService service; // stateful bean

 @Test
 @DirtiesContext
 public void shopClosedTest() {
 service.setOpen(false);
 ...
 }

 @Test
 public void cancelOrderTest() { ... }
}

When beans are defined to exist only in specific Spring
environment profiles, those profiles should be enabled in order
to run tests that use them. Annotation @ActiveProfiles
provides a convenient (IDE/build-tool neutral) way to set the
Spring environment variable spring.profiles.active and
therefore enable the profiles for the test ApplicationContext..
Annotation @ActiveProfiles also supports attribute
inheritLocations(). This should be set to true when profile
activation of a child test class should overwrite, rather than
add, the definitions in the parent class. For cases where profile
selection needs to be done dynamically – based on some run-
time condition (e.g. reachability of a service) – an
ActiveProfilesResolver strategy can be set in attribute
resolver().

The annotation @TestPropertySource can be used when the
settings of an application, captured in the Spring Environment
implicit bean, need to be modified for the purpose of a test.
The value() or locations() attribute specifies the location of a
properties file – either in traditional key-value entries in a text
file format, or in XML format. Setting can also be defined inline
with attribute properties(). Setting defined with
@TestPropertySource take precedence over settings defined
in the base Environment (i.e. for same keys). Additionally,
inlined settings take precedence over settings loaded from a
property file. Annotation @TestPropertySource supports
attribute inheritLocations() and inheritProperties() with the
expected semantics.

» Example: Activating Profiles for Tests

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = TestConfig.class)
@ActiveProfiles({"dev", "jpa"})
public class OrderServiceTests { ...
}

@Profile("jpa")
public class JpaOrderRepository implements OrderRepository {…}

@Profile("dev")
@Bean DataSource dataSource() {
 return new EmbeddedDatabaseBuilder().….build();
}

» Example: Loading Test Properties into Environment

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = TestConfig.class)
@TestPropertySource(value="test.properties",
 properties = { "locale = en_UK", "port: 9090" })
public class OrderServiceTests { ...

Software Engineering School

3

© EInnovator.org

Testing with Profiles

Test Classes with Multiple Test Methods

http://www.einnovator.org/

Spring Testing

}

When executing test methods that have side-effects on
databases, possible interference between methods can not be
avoided by simple use of @DirtiesContext. For these cases,
three approaches are available:

• Rollback Transactions – Force the transactional context
to always rollback, even if no Exception is thrown. The
@Transactional annotation gives support for this approach.

• SQL Scripts – Run setup and cleanup SQL scripts before
and after the test method is run. The @Sql annotation gives
support for this approach.

• “Brute Force” – Delete table records, and repopulated
database with test data. The JdbcTemplate class gives
support for this approach.

The @Transactional annotation is the preferred approach to
test transactional code, since it is more straightforward
approach and might not be easy in many cases to write a SQL
script to undo changes to database state. On the other hand,
using SQL scripts is useful for populate and clean the
database state, possibly in a way specific to each test method.

The @Transactional annotation can be used at the level of
the method or at the level of the test class. In either case, it
sets the default behaviour of the transaction to always rollback.
This can be changed with annotation @Commit. If @Commit
is used at the class level, annotation @Rollback can be used
in individual methods to force a rollback.

As usually, a PlatformTransationManager should be
configured as a Spring bean to run transactional code. It is
assumed by default that its bean name is
transactionManager. The value() or transactionManager()
attributes should be set when set for an alternative name.

Transactional methods defined in Spring beans – usually in
service-layer component annotated with stereotype @Service
– will participate in the transactional context setup by the
Spring Test framework. Notice, however, that if the transaction
propagation rule is defined as REQUIRES in some of these
methods, the rollback-only behaviour does not apply.

Method-level annotations @BeforeTransaction and
@AfterTransaction define methods to run and after a
transaction in run. This contrasts with JUnit4 annotations
@Before and @After that run while the transaction is still
active.

The static utility methods in class TestTransaction also allows

for programmatic control and demarcation of transactions
(since Spring 4.1). Method start() and end() demark the
boundaries of the transaction, and methods flagForCommit()
and flagForRollback() set transactions for “normal” commit or
rollback-only modes.

» Example: Testing with Rollback-only Transactions

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes= TestConfig.class)
public class OrderServiceTests {

@Autowired
OrderService service;

@Test
@Transactional
public void submitOrdeTest() {

Order order = new Order(1L,100.0);
service.submit(order);
service.issueInvoice(order);

}

@Test
@Transactional
public void listOrderTest() {

Order order = new Order(1L,100.0);
service.addOrder(order);
assertEquals(1, service.count());

}
}

» Example: Programmatic Control of Transaction in Test

@Test
public void orderSubmitTest() {
 TestTransaction.flagForCommit();
 TestTransaction.start();
 //...
 TestTransaction.end();
}

When running tests that use relational databases, a common
requirement is to pre-populate the database with some data
(usually made up) for the sole purpose of the tests. This can be
done with a ResourceDatabasePopulator – e.g. globally
when configuring a DataSource, or programmatically in test
classes – e.g. using static utility methods defined in
ScriptUtils.

It is also possible to define SQL scripts to run on a per test
method basis declaratively with annotation @Sql. By default,
scripts are run before a test method is run, but by setting the
attribute executionPhase() is also possible to run the scripts
to clean up the database state after a test method is run. The
annotation @SqlGroup can be used to group multiple @Sql in
a single method – if using <Java7. Annotation @SqlConfig
can be optionally used to configure details how scripts are
parsed and executed.

Software Engineering School

4

Transactional Tests

© EInnovator.org

Execution of SQL Scripts in Tests

http://www.einnovator.org/

Spring Testing

» Example: Populate & CleanUp Database w/ SQL Scripts

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes= TestConfig.class)
@SqlConfig(transactionMode = TransactionMode.ISOLATED,
errorMode=ErrorMode.IGNORE_FAILED_DROPS)
public class OrderServiceTests {
 @Autowired OrderService service;

 @SqlGroup({
 @Sql("insert-test-data.sql"),
 @Sql(scripts="delete-test-data.sql",
 executionPhase = ExecutionPhase.AFTER_TEST_METHOD)})
 @Test
 public void listOrdersTest() {
 List<Order> orders = service.findAllOrders();
 assertEquals(10, orders.size());
}

Table below summarizes the annotations provided by Spring
Test to support test methods running in a transactional context
and/or accessing relational databases.

Annotation Description

@Trasactional Start transactional context and always
rollback

@Commit Cancel the rollback-only setting

@Rollback Cancel the @Commit setting

@BeforeTransaction Execute method before transaction starts

@AfterTransaction Execute method after transaction ends

@Sql Execute SQL script

@SqlConfig Config for SQL script parsing&processing

@SqlGroup Group multiple @Sql (if < Java8)

When testing web application the annotation
@WebAppConfiguration should be used in test classes. This
ensures that a WebApplicationContext is created to
managed the spring beans with support for session-scoped
and request-scoped beans. Several mock objects are also
created to ensure that webapps can be tested with a
completely defined environment, including a
MockServletContext – cached and reused across test
methods, unless the @DirtiesContext annotation is used.
Several thread-local mock objects are also created per test
method to emulate corresponding objects in a Servlet context,
including: MockHttpSession, MockHttpServletRequest,
MockHttpServletResponse, and Spring provided
ServletWebRequest.

» Example: Test Class for Web Environment

@RunWith(SpringJUnit4ClassRunner.class)

@WebAppConfiguration
@ContextConfiguration(classes=
 {WebConfig.class, TestConfig.class})
@ActiveProfiles({"web", "dev"})
public class OrderControllerTests {
 @Autowired WebApplicationContext context; // cached
 @Autowired MockServletContext servletContext; // cached
 @Autowired MockHttpSession session; // thread-local
 @Autowired ServletWebRequest webRequest; // thread-local
}

» Example: Sample Controller & Test Method

@Controller
public class OrderController {
 @RequestMapping("/order/{id}")
 public ModelAndView show(@PathVariable Long id,
 ServletWebRequest webRequest) { … }
}

@Test
public void showTest() {

Long id = 1L;
ModelAndView modelAndView = controller.show(id, webRequest);
assertNotNull(modelAndView);
assertNotNull(modelAndView.getView());
assertNotNull(modelAndView.getModel());
assertEquals(1, modelAndView.getModel().size());

}

» Example: Testing with Session-Scoped Beans

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = WebConfig.class)
public class ShoppingServiceTests {
 @Autowired MockHttpSession session;
 @Autowired ShoppingService service;
 @Autowired ShoppingCard card;

 @Test
 public void checkOutTest() {
 session.setAttribute("currency", "EUR");
 card.addItem(new Item(1, new Product("PAD-ABC")));
 Order order = service.checkOut();
 assertEquals(1, order.size());
 }
}

In some application deployment modes and environments,
more than one ApplicationContext is used, usually with a
single root context and one or more child contexts in one or
more levels (e.g. Spring MVC DispatcherServlet creates a
child ApplicationContext, different from the a root one created
by a WebInitializer or ContextLoaderListener). The
annotation @ContextHierarchy allows this hierarchical
organization to be recreated and emulated when running tests.
The value() attribute takes an array of
@ContextConfiguration annotations defining the
configuration resources for different ApplicationContext. The
name() attribute in each one can be used to selectively control
overriding when class hierarchies are used.

Software Engineering School

5

© EInnovator.org

Testing in a Web Environment

Testing with Context Hierarchies

http://www.einnovator.org/

Spring Testing

» Example: Runnig Web Test w/ Context Hierarchy

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextHierarchy({
 @ContextConfiguration(name="root",classes=AppConfig.class),
 @ContextConfiguration(name="web", classes = WebConfig.class)
})
@ActiveProfiles({"web", "dev"})
public class OrderControllerTests {
 @Autowired WebApplicationContext wac; // child
}

Spring Test framework support out-of-the-container testing of
web apps and REST-WS build with Spring MVC. This is the
ability to “deploy” applications in a virtual (mock) Servlet
Container environment, allowing full integration tests of the
web/REST layer to be performed – including the integration
with Spring MVC without starting a container (standalone or
embedded). The benefit of this is to allow for a more
thoroughly testing, such as: data-binding, validation, message
converters, etc. This is achieved trough a fluent API in class
MockMVC, which allows emulation of HTTP requests without
sending messages over a real transport-layer over the wire.

A MockMVC object is created by a factory method in class
MockMvcBuilders. Factory method webAppContextSetup()
takes an ApplicationContext as argument and creates a
MockMVC that makes use of the full configuration of Spring
MVC defined in the context. Factory method
standaloneSetup() is used for simpler cases with just one (or
a few) controller and simpler Spring MVC configuration.

Method MockMVC.perform() accepts as input a
RequestBuilder object defining the details of the request. A
fluent API can be convenient used to initialize the
RequestBuilder, including: URL or path, including the use of
path variables; HTTP method – e.g. get(), post(); request body
– content(); and headers – e.g. contentType(), accept(). The
result object ResultActions also supports a fluent API that
allows expectations on results to be set with method
andExpect() taking as input a ResultMatcher. Static utility
methods provide a convenient way to defined the expectations
using different types of ResultMatcher, such as: response
status code – status(), content header and body – content().
For response body with portable formats (JSON and XML)
there is also dedicated methods to test the response –
jsonPath() and xpath(). Method andReturn() can be used to
get direct access to the responses of the handler method in the
invoked controller (e.g. model attributes, redirect URL, etc.).

» Examle: Testing a REST-WS Out-of-the-Container

import static org.sf.test.web.servlet.request.MockMvcRequestBuilders.*;
import static org.sf.test.web.servlet.result.MockMvcResultMatchers.*;
import static org.sf.test.web.servlet.request.MockMvcResultHandlers.*;

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes= WebConfig.class)
public class OrderControllerTests {
 @Autowired WebApplicationContext context;
 private MockMvc mockMvc;

 @Before
 public void setup() {
 mockMvc = MockMvcBuilders
 .webAppContextSetup(this.context).build();
 }

 @Test
 public void getOrder() throws Exception {
 mockMvc.perform(get("/order/{id}", 1)
 .accept(MediaType.parseMediaType("application/json")))
 .andDo(print())
 .andExpect(status().isOk())
 .andExpect(content().contentType("application/json"))
 .andExpect(jsonPath("$.status").value("OPEN"));
 }
}

Spring MVC Test framework also support integration with end-
to-end testing frameworks, such as HtmlUnit (since 4.2). This
allow more thoroughly testing of end-to-end behaviour, still
without requiring deployment into a Servlet container (e.g.
detailed testing of web page rendering – if using VDLs like
FreeMarker or Thymeleaf, but not JSP), or execution of
Javascript code (e.g. to test DOM changes). The HtmlUnit API
main object WebClient is initialized with factory methods in
MockMvcWebClientBuilder. Access to URLs in the localhost
are served by Spring MVC Test, rather than going through a
HTTP connection on the wire.

» Example: Testing with HtmlUnit & Spring MVC Test

private WebClient webClient;

@Before
public void setup() {
 this.webClient = MockMvcWebClientBuilder
 .webAppContextSetup(context).build();
}

@Test
public void editOrderTest() throws Exception {
 HtmlPage page = webClient
 .getPage("http://localhost/order/1/edit");
 HtmlForm form = page.getHtmlElementById("orderForm");
 HtmlTextInput status = page.getHtmlElementById("status");
 status.setValueAttribute("CANCELED");
 HtmlSubmitInput submit = form
 .getOneHtmlElementByAttribute("input", "type", "submit");
 HtmlPage page2 = submit.click();
 assertEquals("http://localhost/order/1",
 page2.getUrl().toString());
}

Software Engineering School

6

Out-of-Container Web Testing

Pseudo End-to-End Web Testing

© EInnovator.org

http://www.einnovator.org/

Spring Testing

Spring Boot provides additional annotations and mechanisms
to support integration testing. Table below summarizes some
of these annotations.

Annotation Description

@SpringBootTest Alternative to @ContextConfiguraiton
with additional Spring Boot setting

@TestConfiguration Configuration class for Tests only

@TestComponent Component class for Tests only

@MockBean Create & Inject (Mockito) Mock object

Spring Security also provides some annotations specifically
to support integration testing in secured application. Most are
used setup the SecurityContext with an authenticated user, in
order to invoke and test protected methods. Table below
summarizes some of these annotations.

Annotation Description

@WithMockUser Run with a mock User in SecurityContext

@WithAnonymousUser Run test with anonymous User

@WithUserDetails Run with user from UserDetailsService

@WithSecurityContext Run with a mock SecurityContext

Spring Test framework is highly extensible to accommodate
additional features on the execution of tests. The interface
TestExecutionListener defines a set of callback methods that
can be used to pre/post-process instances of test classes.
They can be installed in individual test classes with annotation
@TestExecutionListeners or globally by specifying the fully-
qualified class name in file META-INF/spring.factories. The
@Order annotation can be used to control the call order for the
listeners. More detailed customization can be done with
interface type TestContextBootstrapper, installed with
annotation @BootstrapWith.

• Testing in Spring Framework Reference Manual –
http://docs.spring.io/spring/docs/4.3.4.BUILD-SNAPSHOT/spring-framework-
reference/htmlsingle/#testing

• Testing in Spring Boot Reference Manual – http://docs.spring.io/spring-
boot/docs/2.0.0.BUILD-SNAPSHOT/reference/htmlsingle/#boot-features-
testing

• Testing in Spring Security Reference Manual – http://docs.spring.io/spring-
security/site/docs/4.2.0.BUILD-SNAPSHOT/reference/htmlsingle/#test

About the Author
Jorge Simão is a software engineer and IT Trainer, with
two decades long experience on education delivery both in
academia and industry. Expert in a wide range of
computing topics, he his an author, trainer, and director
(Education & Consulting) at EInnovator. He holds a B.Sc.,
M.Sc., and Ph.D. in Computer Science and Engineering.

Core Spring & Testing Training
Core Spring is Pivotal's official four-day flagship Spring
Framework training. In this course, students build a Spring-
powered Java application that demonstrates the Spring
Framework and other Spring technologies like Spring AOP
and Spring Security in an intensely productive, hands-on
setting. Completion of this training prepares participants to
take a certification exam and become a Spring Certified
Professional.
Book now an on-site training for date&location of your
choice: www.einnovator.org/course/core-spring

++ QuickGuides » EInnovator.org
» Spring Dependency-Injection, Spring MVC

» RabbitMQ, Redis

» Cloud Foundry, Spring Cloud

» and much more...

++ Courses » EInnovator.org
» Spring Web, Enterprise Spring

» RabbitMQ, Redis, CloudFoundry

» BigData and Hadoop, Spring XD, Spark

» and much more...

EInnovator – Software Engineering School

EInnovator.org offers the best Software Engineering resources and education, in partnership with the most
innovative companies in the IT-world. Focusing on both foundational and cutting-edge technologies and
topics, at EInnovator software engineers and data-scientists can get all the skills needed to become top-of-
the-line on state-of-the-art IT professionals.

Training – Bookings & Inquiries
training@einnovator.org

Consultancy – Partnerships & Inquiries
consulting@einnovator.org

General Info
info@einnovator.orgCopyright © 2016 EInnovator.org. All rights reserved.

Software Engineering School

7

Testing with Spring Boot

Spring Security Testing

Extending Spring Test Framework

Resources

Contacts

http://www.jpalace.org/
http://www.einnovator.org/course/core-spring
http://www.jpalace.org/account/jorge.simao
http://docs.spring.io/spring-security/site/docs/4.2.0.BUILD-SNAPSHOT/reference/htmlsingle/#test
http://docs.spring.io/spring-security/site/docs/4.2.0.BUILD-SNAPSHOT/reference/htmlsingle/#test
http://docs.spring.io/spring-boot/docs/2.0.0.BUILD-SNAPSHOT/reference/htmlsingle/#boot-features-testing
http://docs.spring.io/spring-boot/docs/2.0.0.BUILD-SNAPSHOT/reference/htmlsingle/#boot-features-testing
http://docs.spring.io/spring-boot/docs/2.0.0.BUILD-SNAPSHOT/reference/htmlsingle/#boot-features-testing
http://docs.spring.io/spring/docs/4.3.4.BUILD-SNAPSHOT/spring-framework-reference/htmlsingle/#testing
http://docs.spring.io/spring/docs/4.3.4.BUILD-SNAPSHOT/spring-framework-reference/htmlsingle/#testing
mailto:info@jpalace.org
mailto:feedback@jpalace.org
mailto:training@jpalace.org
http://www.jpalace.org/
http://www.jpalace.org/course/java

	@IfProfileValue
	@ProfileValueSourceConfiguration
	@Timed
	@Repeat
	@Trasactional
	@Commit
	@Rollback
	@BeforeTransaction
	@AfterTransaction
	@Sql
	@SqlConfig
	@SqlGroup
	@SpringBootTest
	@TestConfiguration
	@TestComponent
	@MockBean
	@WithMockUser
	@WithAnonymousUser
	@WithUserDetails
	@WithSecurityContext

