
© EInnovator.org

Asynchronous Processing

S
p

ri
n

g
 B

at
ch

Spring Batch is Java batch framework providing
abstractions, components and services useful to build
reliable batch applications. Batch applications are
characterized by processing of large amounts of data in a
long-running and repeated way, thus have very specific
requirements for reliability.

Spring Batch infrastructure and components are able to
keep persistent track of work progress allowing jobs to be
restart from the point they were stopped in case of
failures. This is specially useful, since the the larger the
dataset the higher the probability of failure.

Spring Batch relies on Core Spring Framework
dependency injection for job definition and infrastructure
configuration. In addition to the core infrastructure
components, Spring Batch comes also with a large
number of out-of-the-box components that can be used to
easily write batch application (e.g. to read and write data
from files and databases).

A companion project Spring Batch Admin, provides a
web GUI for launching jobs and inspecting job status
interactively. Spring Batch is also the reference
implementation for Java Batch JSR-352 standard API.

» Example: Importing Batch Core Dependency [Maven]

<dependency>
 <groupId>org.springframework.batch</groupId>
 <artifactId>spring-batch-core</artifactId>
 <version>3.0.7.RELEASE</version>
</dependency>

A Job is defined as a computation or activity for data
processing. A Job is composed of one or more Step, with
each Step defining a stage in the overall computation. A
Step can perform any arbitrary computation (e.g. by
calling a method in a Spring bean). A common type of
Step is a chunk-based Step, which processes data items
iteratively with a sequence of read-process-write actions.

A JobInstance is defined as a Job with a set of key--
value parameters modelled with JobParams. Parameters

define the data to be processed (e.g. a file name, a queue
name in a message-broker, or table name or ID range).
JobLauncher is the engine used to control the creation
and execution of each JobInstance. A JobInstance is
created and started by submitting the Job and
JobParams to the JobLauncher.

Internally, a JobExecution is created for each attempt to
complete the execution of a JobInstance. And for each
Step in a Job, a StepExecution is created as part of a
owning JobExecution. Meta-data about all these data-
structures is persisted via a JobRepository

Spring Batch infrastructure setup requires the definition
of a JobLauncher and a JobRepository as Spring
managed singleton beans. The default implementation for
a JobLauncher is a SimpleJobLauncher. It runs Jobs
synchronously by default, but can be configured with a
TaskExecuter to run Jobs asynchronously.

An out-of-the-box implementation of a JobRepository is
available that persists JobExecution meta-data in a
relational database. It can be configured in XML with
element <job-repository> from <batch:*> namespace.
Property data-source specifies the DataSource to use.
The JobRepository tables are created with prefix
BATCH_, but this can be changed with attribute table-
prefix.

» Example: Batch Infrastructure Configuration [XML]

<?xml version="1.0" encoding="UTF-8"?>

+
+

 Q
u

ic
kG

u
id

es
 »

 E
In

n
o

v
at

o
r.

o
rg

14

Software Engineering School

Spring Batch Overview

Spring Batch Concepts

Batch Infrastructure

C
o

n
te

n
t

» Spring Batch Concepts

» Batch Infrastructure

» ItemReaders & ItemWriters

» Job Reliability

» Job Paralelization

» Java DSL
Jorge Simão, Ph.D.

Spring Batch

http://www.einnovator.org/
http://www.einnovator.org/quickguide

Spring Batch

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="...">

 <batch:job-repository id="jobRepository"
 data-source="dataSource"/>

 <bean id="jobLauncher" class="org.springframework
 .batch.core.launch.support.SimpleJobLauncher">
 <property name="jobRepository" ref="jobRepository"/>
 </bean>
</beans>

» Example: JobLaucher with TaskExecutor [XML]

<bean id="jobLauncher" class="org.springframework
 .batch.core.launch.support.SimpleJobLauncher">
 <property name="jobRepository" ref="jobRepository"/>
 <property name="taskExecutor" ref="taskExecutor"/>
</bean>

<task:executor id="taskExecutor" />

A Job is defined in XML with element <job>, together with a
set of Step defined with element <step>. The computation
performed by a Step is specified with element <tasklet>. For
arbitrary kinds of steps (e.g. move a file, or delete a directory
content) a reference to a bean implementing interface Tasklet
is provided in attribute ref. A POJO can also be used by setting
attribute method.

For a chunk-based Step, the element <chunk> should be
additionally specified. Attributes reader, processor, writer,
specify, respectively, a ItemReader – a strategy to read items
and map then to domain objects, ItemProcessor – to process
individual items, and a ItemWriter – to write bundled items (a
chunk). Out-of-the-box implementation of ItemReader and
ItemWriter can be used in most cases, while custom
implementations of ItemProcessor are required whenever any
kind of item processing is required. Attribute commit-interval
specifies the chunk size. Transactions boundaries match the
chunk size (i.e. transaction commit is done after the call to the
ItemWriter).

A component used in the configuration of a Step whose
settings include SPEL expressions should be set of scope step
to enforce late evaluation of the expression and late creation of
the component (e.g. #{jobParams[...]).

» Example: Job with Chunk-Based Step

<batch:job id="job">
 <batch:step id="step">
 <batch:tasklet>
 <batch:chunk reader="itemReader" writer="itemWriter"
processor="itemProcessor" commit-interval="100"/>
 </batch:tasklet>
 </batch:step>

</batch:job>

» Example: Job with Custom Tasklet

<batch:job id="job">
<batch:step id="step">

<batch:tasklet ref="mystep" method="run" />
</batch:step>

</batch:job>

<bean id="mytasklet" class="myapp.MyTasklet" />

public class MyTasklet implements Tasklet {
 @Override
 public RepeatStatus execute(StepContribution step,
ChunkContext context) throws Exception {
 //....
 return RepeatStatus.FINISHED;
 }
}

In Jobs with multiple Step, steps are most commonly executed
sequentially. The attribute next defines the ordering of Step.
More complex ordering are possible. Element <next> defines
the transition to occur when a step completes with a certain
ExitStatus. Elements <end>, <fail>, and <stop> can also be
used to terminated a Step with status of COMPLETED,
FAILED, and STOPED. Element <decision> allows a
JobExecutionDecider to determine the ExitStatus of a Step,
and express more complex Step orderings.

» Example: Multi-Step Job

<batch:job id="job">
 <batch:step id="step" next="step2">
 <batch:tasklet ref="setup"/>
 </batch:step>
 <batch:step id="step2" >
 <batch:tasklet ref="copy"/>
 </batch:step>
</batch:job>

A Job is run by calling method JobLaucher.run() with a
reference to the Job. Instances of the same Job are
distinguished with a unique collection of parameters
represented with JobParams. The fluent API of
JobParamsBuilder can be used to created a JobParams.
Submitting a Job with the same parameters make the Job
instance to restart its execution – if it previously stopped. If a
JobInstance was completed with success and it is submitted
again, the exception
JobInstanceAlreadyCompleteException is thrown.
JobLaucher.run() returns an instance of JobExecution which
can be used to check status of the execution.

» Example: Submitting Job Instance to JobLauncher

@Autowired
JobLauncher jobLauncher;

Software Engineering School

2

© EInnovator.org

Defining Jobs & Steps

Running Jobs

http://www.einnovator.org/

Spring Batch

@Autowired @Qualifier("job1")
Job job;

public void runJob() throws Exception {
 JobParameters params = new JobParametersBuilder()
 .addString("resource", "data.csv").toJobParameters();
 JobExecution jobExecution = jobLauncher.run(job, params);
 System.out.println(jobExecution.getExitStatus() + " " +
 jobExecution.getStatus());

}

A Job can also be run using the provided command-line tool
CommandLineJobRunner. It take as parameters: a filename
for a XML spring bean file containing the Job definition(s) and
Batch infrastructure; the name of the Job to run; and key-value
pairs used as Job parameters.

» Example: Running a Job w/ CommandLineJobRunner

$ java CommandLineJobRunner endOfDayJob.xml endOfDay
schedule.date(date)=2007/05/05

FlatFileItemReader reads items from flat files – text files
containing a 2D collection of records (e.g. CSV). Property
resource specifies the file to read. Property lineMapper
specifies a strategy to map a line of text to a record. The
DefaultLineMapper implementation perform this in two steps:
a LineTokenizer maps a line of text to a FieldSet – a generic
representation for a record with key–value pairs; and a
FieldSetMapper that maps a FieldSet to the domain object
returned by the ItemReader. For CSV like file, a
DelimitedLineTokenizer is used as implementation for the
LineTokenizer. The default field separator is the ',', but this
can changed. A useful out-of-the-box implementation of a
FieldSetMapper is the BeanWrapperFieldSetMapper that
maps fields in a FieldSet to Java bean properties of a
specified target type. For cases where the ItemProcessor or
ItemWritter use directly a FieldSet, the implementation
PassThroughFieldSetMapper is available.

» Example: FlatFileItemReader for Reading CSV Files

<bean id="itemReader" class="org.springframework.batch
 .item.file.FlatFileItemReader">
 <property name="resource" value="classpath:data.csv"/>
 <property name="lineMapper">
 <bean class="org.sfpringframework.batch
 .item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean class="org.springframework.batch
 .item.file.transform.DelimitedLineTokenizer">
 <property name="names" value="name,score" />
 </bean>
 </property>
 <property name="fieldSetMapper">
 <bean class="org.springframework.batch
 .item.file.mapping.PassThroughFieldSetMapper"/>

 </property>
 </bean>
 </property>
</bean>

» Example: FlatFileItemReader w/ FixedLengthTokenizer

<bean id="itemReader" class="org.springframework.batch
 .item.file.FlatFileItemReader">
 <property name="resource" value="classpath:products.csv"/>
 <property name="lineMapper">
 <bean class="org.springframework.batch
 .item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean class="org.springframework.batch
 .item.file.transform.FixedLengthTokenizer">
 <property name="names" value="Code,Price,Stock" />
 <property name="columns" value="1-10,11-20,21-30" />
 </bean>
 </property>

 <property name="fieldSetMapper">
 <bean class="org.springframework.batch
 .item.file.mapping.BeanWrapperFieldSetMapper">
 <property name="targetType" value="myapp.Product"/>
 </bean>
 </property>

</bean>
 </property>
</bean>

» Example: Custom FieldSetMapper

public class ProductFieldSetMapper implements
FieldSetMapper<Product> {
 @Override
 public Product mapFieldSet(FieldSet fs)
 throws BindException {
 return new Product(fs.readString("Code"),
 fs.readDouble("Price"), fs.readDouble("Stock"));
 }
}

A FlatFileItemWriter can be use to write to flat files. The
property lineAggregator strategy is used to map a domain
object into a text line. The out-of-the-box implementations of
LineAggregator use a strategy FieldExtractor to map first a
domain object to a Object[], which is then mapped to a text
line. DelimitedLineAggregator maps the Object[] to a
comma-separated fields. FormatterLineAggregator outputs a
formatted line. For items of type FieldSet or a Collection the
PassThroughFieldExtractor can be used as FieldExtractor.

» Example: FlatFileItemWriter outputting CSV File

<bean id="itemWriter" class="org.springframework.batch
 .item.file.FlatFileItemWriter">
 <property name="resource" value="file:target/output.csv" />
 <property name="lineAggregator">
 <bean
class="org.springframework.batch.item.file.transform.DelimitedL
ineAggregator">
 <property name="delimiter" value=","/>
 <property name="fieldExtractor">
 <bean class="org.springframework.batch
 .item.file.transform.PassThroughFieldExtractor" />
 </property>
 </bean>
 </property>
</bean>

Software Engineering School

3

FlatFile ItemReader & ItemWriter

© EInnovator.org

http://www.einnovator.org/

Spring Batch

XML files is another commonly used format for data
import/export – where each item is represented by a XML
fragment. Class StaxEventItemReader is configured with an
Unmarshaller to map each XML fragment to an item.
Conversely, class StaxEventItemWriter is configured with a
Marshaller to map each item into an XML fragment.

» Example: Reading Items from XML File

<bean id="xitemReader" class="org.springframework.batch
 .item.xml.StaxEventItemReader">
 <property name="fragmentRootElementName" value="product" />
 <property name="resource" value="classpath:products.xml" />
 <property name="unmarshaller" ref="marshaller" />
</bean>

<bean id="marshaller" class="org.springframework.oxm
 .xstream.XStreamMarshaller">
 <property name="aliases">
 <util:map id="aliases">
 <entry key="product" value="myapp.domain.Product" />
 </util:map>
 </property>
</bean>

Reading from relational databases with JDBC can be done
with a JdbcCursorItemReader. A SQL query is executed and
a ResultSet is iterated for data streaming. Property
dataSource specifies the DataSource to read the data from,
property sql specifies the SQL query, and property
rowMapper specifies instance of a RowMapper as a strategy
to map a row to a domain object. (The same abstraction used
in JdbcTemplate from Core Spring Framework.)

JdbcPagingItemReader provides an alternative strategy to
read from a database with JDBC using pagination – i.e. a
query is executed multiple times with different values in the
limit clause. Property pageSize specifies the page size. A
QueryProvider strategy is used to generates the complete
SQL query, and to accommodate the fact that different
databases use different SQL syntax for the limit clause.
SqlPagingQueryProviderFactoryBean detects the type of
dataSource being used, and automatically selects a suitable
QueryProvider. The select and from clause, and optionally the
where clause, for the SQL query need to be specified as
separated properties. Property sortKey is also required to
specify the column for ordering.

» Example: JdbcCursorItemReader

<bean id="itemReader" class="org.springframework.batch
 .item.database.JdbcCursorItemReader">
 <property name="dataSource" ref="dataSource"/>

 <property name="sql" value="select * from products"/>
 <property name="rowMapper" ref="productMapper"/>
</bean>

<bean id="productMapper" class="myapp.ProductMapper" />

» Example: Reading Database w/ Pagination

<bean id="itemReader4"
class="org.sf.batch.item.database.JdbcPagingItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="pageSize" value="100"/>
 <property name="rowMapper" ref="productMapper"/>
 <property name="queryProvider">
 <bean class="org.sf.batch
 .item.database.support.SqlPagingQueryProviderFactoryBean">
 <property name="selectClause" value="select Code, Price,
Stock, Sales"/>
 <property name="fromClause" value="from product"/>
 <property name="whereClause" value="where stock>0"/>
 <property name="sortKey" value="id"/>
 </bean>
 </property>
</bean>

Writing to a relational database with JDBC can be done with
the out-of-the-box implementation JdbcBatchItemWriter. It
creates a PreparedStatement and uses it for a batch
insert/write. The strategy ItemPreparedStatementSetter is
used to set the columns values from an item on the
PreparedStatement.

» Example: Batch Writing Items w/ JDBC

<bean id="itemWriter" class="org.springframework.batch
 .item.database.JdbcBatchItemWriter">
 <property name="dataSource" ref="dataSource"></property>
 <property name="sql" value="insert into product values
(?,?,?)"/>
 <property name="jdbcTemplate" ref="jdbcTemplate"/>
 <property name="itemPreparedStatementSetter"
ref="productPreparedStatementSetter"/>
</bean>

<bean id="jdbcTemplate" class="org.springframework.jdbc.core
 .namedparam.NamedParameterJdbcTemplate">
 <constructor-arg ref="dataSource"/>
</bean>

<bean id="productPreparedStatementSetter"
class="myapp.ProductPreparedStatementSetter" />

» Example: A Custom PreparedStatementSetter

public class ProductPreparedStatementSetter implements
ItemPreparedStatementSetter<Product> {
 @Override
 public void setValues(Product product, PreparedStatement ps)
throws SQLException {
 ps.setString(1, product.getCode());
 ps.setDouble(2, product.getPrice());
 ps.setDouble(3, product.getStock());
 }
}

A custom ItemReader is defined my implementing method

Software Engineering School

4

XML ItemReader & ItemWriter

JDBC ItemReader & ItemWriter

© EInnovator.org

Custom ItemReader & ItemWriters

http://www.einnovator.org/

Spring Batch

read() – which returns the next item to process and/or write
(usually a domain object, or a FieldSet), or null if no more
items are available. A ItemReader can be made reliable and
stateful by using a ExecutionContext – an abstraction with a
Map like key-value API, whose values are saved and
recovered persistently. Interface ItemStream defines callbacks
to access and update a ExecutionContext contextualized on
a StepExecution to can be used to keep track of Step
progress in some custom variable (e.g. number of processed
lines, or ID cursor for current row).

A custom ItemWriter is defined by implementing method write
() to write a collection of items (chunk). Batch write operations
are a recommended approach to increase performance.

A ItemProcessor is defined by implementing method
process() to code some custom processing (e.g. item
transformation or mapping). The input and output types of
items may be different. Returning null makes an item to be
ignored (i.e. is not written).

» Example: A Custom ItemProcessor

public class ProductProcessor implements ItemProcessor<Product,
Product>{
 @Override
 public Product process(Product product) throws Exception {
 product.setSales(0);
 return product.getStock()>0 ? product : null;
 }
}

Spring Batch uses several mechanisms to increase the
reliability of batch processing. Chunk-based steps can be
configured with a retry and skip policy to deal with errors
during item reading/writing/processing. A retry should be
attempted if the exception throw while processing an item is
potentially temporary. The attribute retry-limit in element
<chunk> specifies the maximum number of times a item is
attempted to be processed in case of errors. Sub-element
<retryable-exception-classes> limits the set of exceptions
considered temporary. For more complex use cases a
RetryPolicy strategy can be specified as bean reference in
attribute retry-policy. Applications can be informed about
retried items my implementing interfaces ItemReadListener.
ItemProcessListener, or ItemWriteListener and registering it
inside element <listeners>.

An item should be skipped when failure to perform the
processing should not lead to an immediate Step/Job abort.
The attribute skip-limit specifies the maximum number of
items that can be skipped before aborting a Step/Job. Sub-
element <skippable-exception-classes> limits the set of
exceptions considered skippable. For more complex use

cases, a SkipPolicy strategy can be specified as bean
reference in attribute skip-policy. Applications can keep track
of skipped items by implementing a SkipListener and
registering it inside element <listeners>.

» Example: Step with Retry & Skip Configuration

<batch:job id="job" >
 <batch:step id="step" >
 <batch:tasklet start-limit="3">
 <batch:chunk reader="itemReader" writer="itemWriter"
processor="itemProcessor" commit-interval="100" retry-limit="5"
skip-limit="10" >
 <batch:retryable-exception-classes>
 <batch:include class="org.sfpringframework
 .dao.DeadlockLoserDataAccessException"/>
 </batch:retryable-exception-classes>
 <batch:skippable-exception-classes>
 <batch:include class="org.springframework.batch
 .item.file.FlatFileParseException"/>
 </batch:skippable-exception-classes>
 <batch:listeners>
 <batch:listener><bean class="myapp.MyStepListener"/>
 </batch:listener>
 </batch:listeners>

 </batch:chunk>
 </batch:tasklet>
 </batch:step>
</batch:job>

By default, a Step may be restarted as many times as needed
to complete. The attribute start-limit in element <tasklet>
sets a limit on the maximum number of attempts allowed to run
a Step. Conversely, once a Step completes with success it can
no longer be started again. The attribute allow-start-if-
complete=”true” modifies this behavior to always run a Step
even if it run with success previously (e.g. to always perform a
clean up or preparation step for following Step in the same
Job).

» Example: Setting Restart Policy for Steps

<batch:job id="job">
 <batch:step id="step" next="step2">
 <batch:tasklet allow-start-if-complete="true" ref="setup"/>
 </batch:step>
 <batch:step id="step2" >
 <batch:tasklet start-limit="3" >
 <batch:chunk reader="itemReader" writer="itemWriter"
processor="itemProcessor" commit-interval="100"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

When jobs have to process large amounts of date and take too
long to run to completion, it is useful to parallelize the
execution of long-running Step. Spring Batch supports
several strategies for parallelization. A Step can be executed
concurrently by multiple threads by setting attribute task-
executor with a reference to a bean of type TaskExecutor –

Software Engineering School

5

Job Paralelization

© EInnovator.org

Job Recovery

http://www.einnovator.org/

Spring Batch

e.g. defined using the <task:executor> element. In a chunk-
based step, each chunk is executed in a separated
task/thread. Attribute throttle-limit specifies the number of
concurrent tasks to use (4 is the default). A limitation of this
approach, is that most out-of-the-box ItemReader in the
framework are stateful and not thread-safe, so they can not be
used directly. Order of items in the output, also may also
deviate from the order in the input.

For Jobs that contain multiple logically independent step, an
approach to parallel execution is to have each Step executed
as a concurrent flow. Element <split> defines a splited Step,
with multiple independent Step (or sequence) defined as a
<flow>.

» Example: Multi-Thread Step

<batch:job id="job1" >
 <batch:step id="step1" >
 <batch:tasklet start-limit="3" task-
executor="taskExecutor" throttle-limit="10">
 <batch:chunk reader="itemReader" writer="itemWriter"
processor="itemProcessor" commit-interval="100"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

<task:executor id="taskExecutor" pool-size="10"/>

» Example: A Splitted Step w/ Multiple Flows

<batch:job id="job4" >
 <batch:split id="split1" next="step4">
 <batch:flow>
 <batch:step id="step1" next="step2">
 <batch:tasklet ref="prepare" />
 </batch:step>
 <batch:step id="step2">
 <batch:tasklet> ... </batch:tasklet>
 </batch:step>
 </batch:flow>
 <batch:flow>
 <batch:step id="step3">
 <batch:tasklet> ... </batch:tasklet>
 </batch:step>
 </batch:flow>
</batch:split>
<batch:step id="step4" >
 <batch:tasklet ref="cleanup" />
</batch:step>
</batch:job>

An alternative approach to Step parelization is to statically
partition the data to be processed and process each part as a
separated slave Step. The element <partition> defines a
partitioned step. The interface Partitioner defines a partition
strategy, that returns a Map containing the ExecutionContext
for each individual slave Step. Commonly, one or more
parameters are used to defined a partition – i.e. the items that
each slave Step should process (e.g. filename or ID range).
The ItemReader should be configured to use the partition
parameters in a SPEL expression to select which items to
process: #{stepExecutionContext[...]}.

The attribute handler defines an instance PartitionHandler
responsible for the execution of the slaves. The element
<handler> configures an out-of-the-box implementation
TaskExecutorPartitionHandler that executes each step in a
separated task submitted to a TaskExcecutor.

» Example: Partitioned Step

<batch:job id="job5" >
 <batch:step id="step1.master" >
 <batch:partition step="step-1" partitioner="mypartitioner">
 <batch:handler task-executor="taskExecutor" grid-
size="10" />
 </batch:partition>
 </batch:step>
</batch:job>

<batch:step id="step-1">
 <batch:tasklet>
 <batch:chunk reader="itemReader" writer="itemWriter"
processor="itemProcessor" commit-interval="100"/>
 </batch:tasklet>
</batch:step>

<bean id="itemReader8" class="org.springframework.batch
 .item.file.FlatFileItemReader">
 <property name="resource" value=
 "#{stepExecutionContext[resource.name]}/*"/>
 <property name="lineMapper"> … </property>
</bean>

<bean id="mypartitioner" class="myapp.MyPartitioner"/>

» Example: Custom Partitioner By ID Range

public class MyPartitioner implements Partitioner {
 @Override
 public Map<String, ExecutionContext> partition(int gridSize){
 Map<String, ExecutionContext> map = new HashMap<String,
ExecutionContext>();
 int maxId = 1000; //query DB
 int id = 1;
 for (int i = 1; i <= gridSize; i++) {
 ExecutionContext context = new ExecutionContext();
 context.putInt("id0", id);
 id += maxId/gridSize;
 context.putInt("id1", id);
 map.put("partition" + i, context);
 }

return map;
 }
}

Spring Batch support Java-based configuration of Jobs and
Steps (since 2.2.0). Annotation @EnableBatchProcessing
auto-configures two builders – JobBuilderFactory and
StepBuildFactory, and the batch infrastructures beans
including JobRepository and JobLauncher.
JobBuilderFactory provides a fluent API (DSL) to define Jobs
in Java, while StepBuildFactory provides a fluent API to
define Steps.

» Example: Job Definition w/ Java DSL

Software Engineering School

6

Java Batch DSL

© EInnovator.org

http://www.einnovator.org/

Spring Batch

@Configuration
@EnableBatchProcessing
public class BatchConfig {
 @Autowired private JobBuilderFactory jobs;

 @Autowired private StepBuilderFactory steps;

 @Bean public Job job(@Qualifier("step1") Step step1,
 @Qualifier("step2") Step step2) {
 return jobs.get("myJob").start(step1)
 .next(step2).build();
 }

 @Bean protected Step step1(ItemReader<Product> reader,
 ItemProcessor<Product, Product> processor,
 ItemWriter<Product> writer) {
 return steps.get("step1")
 .<Product, Product> chunk(100)
 .reader(reader)
 .processor(processor)
 .writer(writer).build();

}

 @Bean protected Step step2(Tasklet tasklet) {
 return steps.get("step2")
 .tasklet(tasklet).build();
 }

 @Bean protected Tasklet tasklet() {
 return new MyTasklet();
 }
}

Spring Boot includes auto-configuration and auto-execution

support for Spring Batch. Boot support is enabled with Maven
dependency spring-boot-starter-batch. This dependency
implies automatic auto-configuration of Spring Batch
infrastructure beans – making annotation
@EnableBatchProcessing optional. Spring Boot also runs
automatically all Jobs defined in the ApplicationContext, or
the Jobs whose names are specified in environment variable
spring.batch.job.names. If a JobRegistry bean is defined,
the Jobs set in variable spring.batch.job.names are resolved
from the JobRegistry, rather than taken as bean names. This
is useful in applications where Jobs are defined across
multiple ApplicationContext and registered centrally in the
JobRegistry.

» Example: Importing Batch Boot Starter [Maven]

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-batch</artifactId>
</dependency>

• Spring Batch Project home page: http://projects.spring.io/spring-batch/

• Spring Batch Reference Manual: http://docs.spring.io/spring-
batch/4.0.x/reference/html/index.html

• Spring Batch Admin: http://docs.spring.io/spring-batch-admin/

About the Author
Jorge Simão is a software engineer and IT Trainer, with
two decades long experience on education delivery both in
academia and industry. Expert in a wide range of
computing topics, he his an author, trainer, and director
(Education & Consulting) at EInnovator. He holds a B.Sc.,
M.Sc., and Ph.D. in Computer Science and Engineering.

Spring Integration Training
Enterprise Spring is a 4-day trainer lead course that
teaches how to use Spring Framework, Spring
Integration, Spring Batch, and Spring XD to build
enterprise integration solutions. Completion of this training
prepares participants to take a certification exam and
become a Pivotal Certified Enterprise Integration
Specialist.
Book for a training event in a date&location of your choice:
www.einnovator.org/course/enterprise-spring

++ QuickGuides » EInnovator.org
» Spring Dependency-Injection, Spring MVC

» Spring Integration

» Cloud Foundry, Spring Cloud

» and much more...

++ Courses » EInnovator.org
» Core Spring, Spring Web

» RabbitMQ, CloudFoundry

» BigData and Hadoop, Spark

» and much more...

EInnovator – Software Engineering School

EInnovator.org offers the best Software Engineering resources and education, in partnership with the most
innovative companies in the IT-world. Focusing on both foundational and cutting-edge technologies and
topics, at EInnovator software engineers and data-scientists can get all the skills needed to become top-of-
the-line on state-of-the-art IT professionals.

Training – Bookings & Inquiries
training@einnovator.org

Consultancy – Partnerships & Inquiries
consulting@einnovator.org

General Info
info@einnovator.org

Software Engineering School

Copyright © 2016 EInnovator.org. All rights reserved.

7

Spring Batch w/ Spring Boot

Resources

Contacts

http://www.jpalace.org/
http://www.einnovator.org/course/enterprise-spring
http://www.jpalace.org/account/jorge.simao
http://docs.spring.io/spring-batch-admin/
http://docs.spring.io/spring-batch/4.0.x/reference/html/index.html
http://docs.spring.io/spring-batch/4.0.x/reference/html/index.html
http://projects.spring.io/spring-batch/
mailto:info@jpalace.org
mailto:feedback@jpalace.org
mailto:training@jpalace.org
http://www.jpalace.org/

