
© EInnovator.org

S
p

ri
n

g
 4

 –
 D

e
p

en
d

en
cy

-I
n

je
c

ti
o

n

Spring Framework is a comprehensive Java Framework
which supports as core service application configuration
by dependency-Injection. Spring manages application
components by creating and initializing them
automatically with suitable dependencies. Spring latest
versions, 3.2 and more recently 4.x, introduces several
new mechanisms that simplify and expand application
configuration with annotations.

Java classes are declared as Spring managed
components – beans, by decorating the class with
annotation @Component. The name of the bean can be
specified in the value() attribute of the annotation. If
omitted, the unqualified uncapitalized name of the class is
used (e.g. myapp.StockService is named
stockService). The component is configured by
specifying which members should be automatically
initialized by Spring using a dependency-injection
annotation. @Autowired specifies that a dependency to
another bean with matching type should be resolved.
@Autowired annotation can be applied to any class
member, including: fields, property setters and other
methods, and (at most) one constructor. Failure to resolve
a @Autowired dependency is fatal, unless attribute
@Autowired.required() is set false. @Required
annotation can also be used for similar purpose. Bean
instance creation can be deferred until a bean is looked-
up or injected in other bean with annotation @Lazy.

Dependencies having generic types Collection<T> (e.g.
List, and Set), are injected with all beans that have a type
matching the type of the collection's elements.
Dependencies with generic type Map<String,T> are
injected with an each entry per matching bean – the entry
key is the name of the bean. Ordering of bean in
collections can be controlled with annotation @Order.

» Example: A Spring Managed Component

@Component
public class MarketServiceImpl
implements MarketService {

 @Autowired
 private StockService stockService;
 …
}

Dependency-injection by type, as performed with
annotation @Autowired, leads to ambiguity exceptions
when multiple beans of the same type are defined. A
simple approach to remove ambiguity is by giving
precedence to one of the matching bean with annotation
@Primary. Alternatively, the annotation @Qualifier can
be used in a field, setter, or parameter, to restrict the bean
candidates for injection, by matching to a bean with
specific name or a bean with matching qualifier. Qualifiers
can also be used to restrict the beans that are injected in
a Collection or Map. Custom qualified annotations can
be defined by using @Qualifier as meta-annotation. If a
custom qualifier annotation has attributes, matching
requires that all attributes are equals.

» Example: A Qualified Bean

@Component
@Qualified("us")
public class USMarketService implements
 MarketService { … }

» Example: Qualified Dependency-Injection in Field

@Component
public class TradingService {
 @Qualified("us")
 private MarketService marketService;
 …
}

» Example: Custom Qualifier Annotation

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})
@Qualifier
public @interface Region {
 String value();
}

» Example: Qualified Injection in Argument

@Component
public class TradingService {

+
+

 Q
u

ic
k

G
u

id
e

s
 »

 E
In

n
o

v
a

to
r.

o
rg

2

Software Engineering School

C
o

n
te

n
t

» Annotation-Driven DI
» Java Configuration
» Scopes & Stereotypes
» Profiles
» Conditional Beans
» @Enable*Jorge Simão, Ph.D.

Spring 4 – Annotation-Driven
Dependency-Injection

Application-Configuration with Spring

Defining Components with Annotations

Qualifiers

http://www.einnovator.org/
http://www.einnovator.org/quickguide

Spring 4 – Annotation-Driven
Dependency-Injection

 public TradingService(@Region("us") usMarket,
 @Region("us") euMarket) { … }
}

The API of the dependency-injection sub-system in Spring is
spear-headed by the services of an ApplicationContext –
this is the component that manages the life-cycle of other
components. Including by performing these steps:

• Load the bean definitions (e.g. by component-scanning
classes with annotations)

• Create instances of beans, and initialize them with suitable
dependencies

• Call-back the beans instances to notify them about life-
cycles events

When using annotation-based dependency-injection the class
AnnotationConfigApplicationContext can be used.

» Example: Creating an ApplicationContext

try (
 AnnotationConfigApplicationContext appContext =
 new AnnotationConfigApplicationContext(
 "myorg.myapp")) {
 StockService stockService =

appContext.getBean(StockService.class);

 List<StockInfo> stocks =
 stockService.getBestPerforming(10);
 …
}

Notice that AnnotationConfigApplicationContext
implements the interface java.lang.AutoCloseable, and its
being created and used in a try-with-resources block.

Spring uses a recursive search (scan) on packages to discover
classes annotated with @Component (or other stereotype
annotations – see below). Internally, Spring uses the API of
Java ClassLoader to implement the scanning, so any class in
the classpath can be loaded. Component scanning is started
from some base package(s) specified in the constructor of the
ApplicationContext. Additionally, component scan be
triggered by finding a component (usually a configuration
class) with annotation @ComponentScan. The base
package(s) can be specified by name in attribute
basePackages() or value(). An alternative type-safe approach
is to start scanning from the package of the classes specified
in attribute basePackageClasses(). If no base package is

specified, it is assumed to be the package of the class
annotated with @ComponentScan. A custom strategy for the
default name of components can also be set in attribute
nameGenerator() as a class implementing interface
BeanNameGenerator.

Inclusion and exclusion filters can be applied on the set of
scanned classes with attributes includeFilters() and
excludeFilters(). The details of each filter is specified with
annotation @ComponentScan.Filter. Attribute type() defines
the type of the filter and attribute pattern() de filter value.
Supported filter types include: regex on class name (configure
also with attribute resourcePattern()), type-level annotations
(default), type assignment, AOP point-cut expressions, and
custom filters. Specified filters are combined such that at least
one inclusion filter should be matched, and no exclusion filter
is matched. Defaults filters are also considered (to include
@Component annotated classes), unless attribute
useDefaultFilters() is set to false. A custom filter is defined as
a class implementing interface TypeFilter.

» Example: Scanning Components From Named Package

@ComponentScan(basePackages="myorg.myapp"))
@Configuration
public class AppConfig { … }

» Example: Scanning Components From Class Package

@ComponentScan(basePackageClasses=AppConfig.class)
public class AppConfig { … }

» Example: Component-Scan with Filters

@ComponentScan(basePackages="myorg.myapp",
includeFilters={
 @ComponentScan.Filter(type=FilterType.REGEX,
 pattern="*Service"),
 @ComponentScan.Filter(type=FilterType.ANNOTATION,
 value=Component.class)
})
public class AppConfig { … }

When components require a more complex configuration than
is possible to do with annotations, or when classes can not be
annotated (e.g. third-party library classes), factory-methods
should be used to create bean instances. Factory-methods are
marked with annotation @Bean, and should use the Java new
operator and property setters to create and initialize the bean
instance. The name of the bean is by default the name of the
factory-method, but can be override with attribute name().
Multiple name can be provided – as aliases. Factory method
can be located in any class that defines a Spring managed
bean, but are usually defined in configuration classes

Software Engineering School

2

ApplicationContext API

Component Scan

Java Config - Factory Methods

© EInnovator.org

http://www.einnovator.org/

Spring 4 – Annotation-Driven
Dependency-Injection

annotated with stereotype annotation @Configuration. The
dependencies of a bean can be declared and injected through
the parameters of the factory-method, or by using
@Autowired in the class where the factory-method is defined.
If the dependency is defined in the same configuration class as
the factory-method, direct invocation of the factory-method
defining the dependency is allowed. However, the scope of
dependency bean is only respected if the configuration class is
annotated with @Configuration. (Spring uses code-
generation library CGLib to dynamically generate a sub-class
of the configuration class that overwrite factory-methods in a
way that preserve the bean scope.)

» Example: Spring Java Configuration Class

@Configuration
public class AppConfig {
 @Autowired
 private StockRepository stockRepository;

 @Bean
 StockService stockService() {
 return new StockService(stockRepository);
 }
}

» Example: Dependency in Method Parameter

@Bean
StockService stockService(StockRepository repo) {
 return new StockService(repo);
}

» Example: Explicit Name in Bean

@Bean(name="dataSource")
public DataSource dataSourceLocal() { … }

Bean instances created by a factory-method also have
dependencies injected when their classes has members
annotated with @Autowired. Additionally, a bean instance can
be autowired automatically by finding dependencies by
matching the name or type of the property to the dependency.
This is enabled by setting attribute autowire() in annotation
@Bean. Configuration can be split across several class by
using annotation @Import.

» Example: Automatic Dependency Injection by Type

@Bean(autowire=Autowire.BY_TYPE)
StockService stockService() {
 return new StockService();
}

Each ApplicationContext has associated with it an implicit
singleton bean of type Environment (since Spring 3.1). The

Environment provides a unified API to access application
settings/properties defined in a variety of ways, including:
custom properties files loaded with @PropertySource, JVM
properties (defined with option -D), OS defined environment
variables, and web app global parameters. Environment
variable can be looked up explicitly or injected using
annotation @Value annotation with property-place-holder
expression ${propName}. SPEL script expressions are also
supported with syntax #{expr}.» Example: Importing a Property File

@PropertySource("classpath:app-config.properties")
@Configuration
public class Test { … }

» Example: Injecting Environment and Setting Lookup

@Autowired
public Environment environment;

@Bean
public DataSource dataSource() {
 return new DriverManagerDataSource(
 environment.getProperty("db.url"));
}

» Example: Injection of Setting with @Value

@Value("${db.url}")
private String url;

@Bean
public DataSource dataSource(String url) {
 return new DriverManagerDataSource(url);
}

» Example: @Value Injection in Method Parameter

@Bean
public DataSource dataSource(
 @Value("${db.url}") String url) {
 return new DriverManagerDataSource(url);
}

The scope of bean defines the context of existence of its
instances (e.g. life-cycle duration). By default, Spring beans
are defined with scope singleton – meaning that a single
instance exist per ApplicationContext. Alternative scopes can
be specified with annotation @Scope. Scope prototype
defines beans whose instances are created every time they
are injected. The names of these two provided scopes are
defined as constants in class BeanDefinition. On a web
environment scopes session, request, and application are
also available, and backed-up by a Servlet attribute with
corresponding scope. The names of these web scopes are
defined as constants in class WebApplicationContext. The
default strategy to assign scopes to scanned beans can be

Software Engineering School

3

Bean Scopes

Environment and Property Sources

© EInnovator.org

http://www.einnovator.org/

Spring 4 – Annotation-Driven
Dependency-Injection

overridden by setting attribute scopeResolver() of annotation
@ComponentScan.

When beans of a more volatile (short-lived) scope are injected
in bean of longer lasting scope (e.g. session scoped bean
inject in a singled scoped bean), a proxy that dynamically
resolves to the correct instance depending on the scope
context should be injected. Proxy creation is controlled with
attribute @Scope.proxyMode(). CGLib proxies are created by
default. JDK proxies can be configured with mode
ScopedProxyMode.INTERFACES. The proxy mode can also
be specified for scanned components with attribute
@ComponentScan.scopedProxy(). However, the default
behavior here is not to create proxies (unless the @Scope
annotation specifies otherwise).

» Example: Defining a Prototype-Scoped Bean

@Bean
@Scope(value=BeanDefinition.SCOPE_PROTOTYPE)
public ConfigurableSearchStrategy searchStategy() { … }

» Example: Defining a Proxyed Session-Scoped Bean

@Bean
@Scope(value=WebApplicationContext.SCOPE_SESSION,
 proxyMode=ScopedProxyMode.INTERFACES)
public StockRepository stockRepo() { … }

Table below summarize scopes available out-of-the box and
registered automatically. Scopes marked with * are available
only in a web environment.

Scope Description

singleton Single instance per ApplicationContext

prototype Instance created on-demand

session* Bean backed by session-scoped attribute

request* Bean backed by request-scoped attribute

application* Bean backed by application-scoped attribute

Custom scopes can also be defined with a bean that
implements interface Scope, and registered with a bean of
type CustomScopeConfigurer. Additional Spring projects
may define further scopes, using this mechanism.

The basic mechanism to define a Java class as Spring bean is
the @Component annotation. Other annotations can also be
used to define a component - known as stereotype
annotations. All annotations, annotated themselves with
@Component are also recognized by the component-scan

algorithm. It is also possible to define custom stereotypes by
defining an annotation having @Component (or another
stereotype) as meta-annotation.

The main purpose of stereotype annotations is two-fold: to
categorize components (e.g. for description and selection of
components); and to automatically “inherit” further annotations.

Several stereotypes annotations are provided out-of-the box by
Spring core Framework. Other Spring projects introduce
further stereotype annotations.

» Example: A Spring Managed Component

@Component
public class MarketServiceImpl implements MarketService
{ … }

» Example: A Repository

@Repository
public class JpaStockDao implements StockDao { … }

» Example: A Controller

@Controller
public class StockController { … }

» Example: A Rest Controller

@RestController
public class RestStockController { … }

» Example: Custom Stereotype

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})
@Component
@Transactional
public @interface TransactionalService {}

Table below summarizes pre-defined stereotypes (non-core
are marked with *).

Annotation Description

@Component Most generic stereotype for a
component

@Service Service-layer component

@Repository Data-Access Layer component

@Controller Web-Layer Component (for
Spring MVC)

@RestContoller A Rest Web-Service Component
(for Spring MVC)

@Configuration Java Config class

@Endpoint * Spring Web-Service Component

@MessageEndpoint * Service-Integration Component

Software Engineering School

4

Stereotypes

© EInnovator.org

http://www.einnovator.org/

Spring 4 – Annotation-Driven
Dependency-Injection

A bean can be called back to notify them of life-cycle event.
Annotation @PostConstruct specifies the callback handler
method that is called after a bean instance is initialized – i.e. all
fields and properties are injected. Use cases include: allocation
of resources, and completion of the initialization in a non-trivial
custom way. Annotation @PreDestroy specifies the callback
method that notifies that the bean instance is about to be
destroyed. For singleton beans, the timing of destruction
matches the shutdown of the container (or when method
ApplicationContext.reset() is called). For non-singleton
beans, the destruction matches the shutdown of a bean scope
context (e.g. when a Session is closed for a session scoped
bean). Prototype scope bean are not called back, since the
framework does not keep track of them. When a parent and
child bean class defines callback methods, both the methods
in the parent and child class are called. Callback method
should not have parameters, and should return void. In
factory-methods annotated with @Bean, attribute initMethod()
can also be used to define an initialization callback (as
alternative or in addition to @PostConstruct). Likewise,
attribute destroyMethod() can be used to define an
initialization callback (as alternative or in addition to
@PreDestroy). (Implementing interfaces InitializingBean
and/or DisposableBean is another way to define life-cycle
callbacks, but it is not a recommended approach as it couples
application components to Spring.)

» Example: Post-Construct and Pre-Destroy Callbacks

public class DataServiceImpl implements DataService {
 Cache cache;

 @PostContruct
 public void init() { cache.put(...); }

 @PreDestory
 public void destroy() { cache.close(); }
}

» Example: Callbacks in @Bean Factory-Method

@Bean(initMethod="init", destroyMethod="destroy")
public DataService dataService() { … }

Spring beans can be conditionally enabled based on the
activation of (at least) one of the profiles for which it is defined.
Annotation @Profile is used to define the profiles in which a
bean in defined. This is useful when same type&role beans

have different implementation in different application
deployments scenarios (e.g. development vs. production). The
set of enabled profiles is defined by the value of environment
variable spring.profiles.active. Alternatively, it can be set
programmatically using the API of the Environment bean
associated with the ApplicationContext. Custom profile
annotations can be defined using @Profile as meta-
annotation.

» Example: Profiles in Configuration Class

@Profile("dev")
@Configuration
public class AppConfigDev {
 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.HSQL)
 .setName("mydb")
 .addScript("classpath:" + SQLDIR + "schema.sql")
 .addScript("classpath:" + SQLDIR + "test-data.sql")

 .build();
 }
}

» Example: Profiles in Bean Factory Methods

@Configuration
public class AppConfig {

 @Profile("dev")
 @Bean(name="dataSource")
 public DataSource dataSourceDev() {
 return new EmbeddedDatabaseBuilder().….build();
 }

 @Profile("prod")
 @Bean(name="dataSource")
 public DataSource dataSourceProd()
 throws NamingException {
 Context context = new InitialContext();
 return (DataSource)
 context.lookup("java:comp/env/jdbc/datasource");
 }
}

» Example: Activate Profile Programmatically

AnnotationConfigApplicationContext context = new
 AnnotationConfigApplicationContext();
context.getEnvironment().setActiveProfiles("dev");
context.register(AppConfig.class);
context.refresh();

» Example: Defining Custom Profile Annotation

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})
@Profile("jdbc")
public @interface Jdbc {}

Software Engineering School

5

Life-Cycle Events Callback Handlers

Profiles

© EInnovator.org

http://www.einnovator.org/

Spring 4 – Annotation-Driven
Dependency-Injection

Bean can be conditionally enabled with arbitrary
programatically-defined conditions using annotation annotation
@Conditional (since Spring 4.0). The value() attribute is a
class that implements interface Condition, which is the
strategy that decides if a bean should be enabled. (@Profile is
actually implemented as simply a specific condition.) Method
Condition.match() takes two input descriptors, including one
of the type AnnotatedTypeMetadata which allows to perform
introspection of types without loading referenced classes and
avoiding potential class-loading problems. Custom conditional
annotations can also be defined by using @Conditional as
meta-annotation.

» Example: Conditionally Defined Bean

@Conditional(JndiCondition.class)
@Bean(name="dataSource")
public DataSource dataSourceJNDI() throws … {
 return (DataSource) new InitialContext()
 .lookup("java:comp/env/jdbc/datasource");
}

» Example: Defining Custom Bean-Enabling Condition

public class JndiCondition implements Condition {
 @Override
 public boolean matches(ConditionContext context,
 AnnotatedTypeMetadata typeMetadata) {
 if (Boolean.TRUE.equals(context.getEnvironment()
 .getProperty("jdni.enable", Boolean.class))) {
 return true;
 }
 return false;
 }
}

» Example: Defining Custom Conditional Annotation

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})
@Conditional(JndiCondition.class)
public @interface Jndi {}

» Example: Using Custom Conditional Annotation

@Jndi
@Bean(name="dataSource")
public DataSource dataSourceJNDI() throws … { … }

Table below summaries the Spring 4 annotations for
dependency-injection.

Annotation Attributes Description

@Component
(+stereotypes)

value()=”” Define managed component

@Configuration value()=”” Java Config class

@Autowired required()
=true

Configured member
(injection-point)

@Value value() Value injection

@Required Mandatory dependency

@Bean value() Factory-method

@Qualifier value() Bean Qualifier

@PostConstruct Initialization callback

@PreDestroy Destruction callback

@Profile value() Bean profile

@Conditional value() Conditional bean

@Order value() Bean order

@Lazy Deferred initialization

@Primary Higher-Precedence bean

@Import value() Import configuration classes

JSR-330 dependency-injection annotations are supported
since Spring 3.0. Annotation @javax.inject.Inject is
comparable to @Autowired; annotation
@javax.inject.Named used at type-level takes the role of
@Component, and used at the parameter or field level takes
the role of @Qualifier. JSR-330 defines the prototype scope
as default, although Spring maintains the scope singleton as
default (i.e. use of JSR-330 annotation @Singleton is
unnecessary). Annotation @javax.inject.Scope is defined in
JSR-330 as a mechanism to defined new scopes, but in Spring
new scopes are defined by implementing interface Scope.

JSR-250 annotation @javax.annotation.Resource is also
supported (since Spring 2.5) to perform dependency-injection
by name at the field-level or in a property setter. The name of
the field or property is used as the name to resolve. Attribute
@Resource.value() can also be used to specify an alternative
name. Spring falls-back to bean lookup by type, as with
@Autowired and @Inject, if no bean of matching name is
found.

» Example: Dependency-Injection w/ JSR-330 Annotation

@Named("marketService")
public class MarketService {
 @Inject
 private StockService stockService;

Software Engineering School

6

Conditional Beans

JSR-330 & JSR-250 Annotations

© EInnovator.org

http://www.einnovator.org/

Spring 4 – Annotation-Driven
Dependency-Injection

}

Table below summaries JSR-330 & JSR-250 dependency-
injection annotations supported by Spring.

Annotation Spring equiv. Description

@Inject @Autowired Injection-Point

@Named @Component

@Qualifier

Defined Component

Qualify Injection-point

@Singleton @Scope(“singleton”) Singleton scoped bean

@Scope Scope (interface) Define new scope

@Resource @Autowired Injection-Point

@Priority @Order Bean order

In Spring 3.2, several annotation were introduced to enable
features from different sub-systems without requiring the use of
XML based configuration and importing XML namespaces.
Table below summaries these annotations.

Annotation & XML equiv. Description

@EnableAspectJAutoProxy

<aop:aspectj-autoproxy>

Enable AOP using AspectJ style
pointcuts in @Aspect beans

@EnableTransactionManage
ment

<tx:annotation-driven>

Enable AOP based declarative
transaction management

@EnableCaching

<cache:annotation-driven>

Enable AOP based caching

@EnableMBeanExport

<context:mbean-export>

Enable JMX exporting of
@ManagedResource beans

@EnableJms Register async listener methods
annotated with @JmsListener

• Spring Framework Reference Manual –
http://docs.spring.io/spring/docs/4.2.0.BUILD-SNAPSHOT/spring-
framework-reference/htmlsingle/

• Spring Framework Project – http://projects.spring.io/spring-
framework/

• Spring Framework GitHub Repository – https://github.com/spring-
projects/spring-framework

About the Author
Jorge Simão is a software engineer and IT Trainer, with
two decades long experience on education delivery both in
academia and industry. Expert in a wide range of
computing topics, he his an author, trainer, and director
(Education & Consulting) at EInnovator. He holds a B.Sc.,
M.Sc., and Ph.D. in Computer Science and Engineering.

Core Spring Training
Core Spring is Pivotal's official four-day flagship Spring
Framework training. In this course, students build a Spring-
powered Java application that demonstrates the Spring
Framework and other Spring technologies like Spring AOP
and Spring Security in an intensely productive, hands-on
setting. Completion of this training prepares participants to
take a certification exam and become a Spring Certified
Professional.
Book now an on-site training for date&location of your
choice: www.einnovator.org/course/core-spring

++ QuickGuides » EInnovator.org
» Java8, Spring MVC, Spring WebFlow

» RabbitMQ

» Cloud Foundry, Spring XD

» and much more...

++ Courses » EInnovator.org
» Java, Spring Web, Enterprise Spring

» RabbitMQ, Cloud Foundry

» Spring XD, BigData and Hadoop, Data-Science

» and much more...

EInnovator – Software Engineering School

EInnovator.org offers the best Software Engineering resources and education, in partnership with the most
innovative companies in the IT-world. Focusing on both foundational and cutting-edge technologies and
topics, at EInnovator software engineers and data-scientists can get all the skills needed to become top-of-
the-line on state-of-the-art IT professionals.

Training – Bookings & Inquiries
training@einnovator.org

Consultancy – Partnerships & Inquiries
consulting@einnovator.org

General Info
info@einnovator.org

Software Engineering School

Copyright © 2014 EInnovator.org. All rights reserved.

7

Contacts

@Enable* Annotations

Resources

http://www.jpalace.org/
http://www.einnovator.org/course/core-spring
http://www.jpalace.org/course/java
http://www.jpalace.org/account/jorge.simao
https://github.com/spring-projects/spring-framework
https://github.com/spring-projects/spring-framework
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/
http://docs.spring.io/spring/docs/4.2.0.BUILD-SNAPSHOT/spring-framework-reference/htmlsingle/
http://docs.spring.io/spring/docs/4.2.0.BUILD-SNAPSHOT/spring-framework-reference/htmlsingle/
mailto:info@jpalace.org
mailto:feedback@jpalace.org
mailto:training@jpalace.org
http://www.jpalace.org/
http://www.jpalace.org/course/java

