
© EInnovator.org

R
ab

b
it

M
Q

 –
 J

av
a

 C
lie

n
t

AMQP is an open-standard protocol for reliable message-
based communication. AMQP is a wire-level protocol that
aims to standardize all wire-level interactions between
communicating endpoint and brokers. Mechanisms
specified by AMQP includes:

• On-wire type encoding and message-frames

• Flow-Control

• Queuing and dispatching

• Multi-semantics reliability based on persistence,
acknowledges and transactions

• Secure communication

RabbitMQ is a leading implementation of AMQP,
implemented in Erlang and sponsored by Pivotal,
consisting of broker (messaging-server) and client APIs
for several languages, including Java, Erlang, C#, and
other. RabbitMQ uses an extensible plugin-based
architecture. In addition to the standard mechanisms
specified in AMQP, custom extensions to AMQP are also
implemented by RabbitMQ plugins.

A typical distributed system architecture based on AMQP
and RabbitMQ consists of one (or more) message
Producer application(s) and one or more message
Consumer application(s). AMQP allows for applications
to communicate directly, but in most settings applications
interact via a middle-man – a message broking service.

RabbitMQ is straightforward to install and getting started
with. Since RabbitMQ is implemented in Erlang, the first
step is to implement Erlang runtime environment. Next
step, is to download RabbitMQ bundle, and follow the
instruction in the RabbitMQ website for installation and
setup. For Windows-OS, a installer is also available that
performs all the installation&configuration steps
automatically. (See list of resources at the end of this
refcard.)

Once Erlang and RabbitMQ is installed, you can start a
RabbitMQ server (broker) manually by running from the
command rabbitmq-server. (In Windows-OS, you should
run the command in an Administrator console).

» TIP: Starting RabbitMQ Broker Manually

> rabbitmq-server

RabbitMQ 3.4.1. Copyright (C) 2007-2014 GoPivotal,
Inc.
...
Starting broker... completed with 0 plugins.

The output message produced by the server, includes the
location of the log file. A useful place to look if unexpected
issues occur during start-up.

In Windows, the command rabbitmq-service install can
also be used to install the RabbitMQ server as a windows
service, that is started automatically when the server
machine starts. The Windows installer, register RabbitMQ
as a service by default.

RabbitMQ bundle also includes a very useful
administration tool rabbitmqctl that can be used to check
the status and state of the broker:

» TIP: Checking Status of RabbitMQ Broker

> rabbitmqctl status

Status of node 'rabbit@mypc.acme.org' ...

+
+

 Q
u

ic
k

G
u

id
e

s
 »

 E
In

n
o

v
a

to
r.

o
rg

3

Software Engineering School

C
o

n
te

n
t

» AMQP & RabbitMQ

» Channels & Queues

» Exchanges & Bindings

» Request-Reply

» Reliability
Jorge Simão, Ph.D.

RabbitMQ – Java Client

AMQP

RabbitMQ

RabbitMQ Installation

RabbitMQ Administration

http://www.einnovator.org/
http://www.einnovator.org/quickguide

RabbitMQ – Java Client

[{pid,5812},
...]

» TIP: List Queues in RabbitMQ Broker

> rabbitmqctl list_queues

Listing queues ...
stocks-q 0
options-q 0

» TIP: List Exchanges in RabbitMQ Broker

>rabbitmqctl list_exchanges

Listing exchanges ...
amq.direct direct
amq.fanout fanout
amq.headers headers
amq.match headers
amq.rabbitmq.log topic
amq.rabbitmq.trace topic
amq.topic topic

Table below summarizes some of the commands supported by
rabbitmqctl:

Command Description

status Check connectivity status with broker

stop Stop server/broker

list_queues List declared queues

list_exchanges List declared exchanges

list_bindings List queue-exchange bindings

RabbitMQ includes a Java client library distributed as JAR file
rabbitmq-java-client-bin-x.y.z. The library can be used by
simply including it in the classpath of the Java program (or
declare it as a maven dependency), together with a couple of
dependencies.

» TIP: Java +RabbitMQ Program Compilation

> javac -cp rabbitmq-java-client-bin-x.y.z.jar MyProducer.java
MyConsumer.java

» TIP[Linux&Mac]: Java +RabbitMQ Program Execution

> export CP=.:commons-io-1.2.jar:commons-cli-1.1.jar:\

rabbitmq-java-client-bin-x.y.z.jar (terminal window 1&2)
> java -cp $CP MyConsumer.java (terminal window 1)
> java -cp $CP MyProducer.java (terminal window 2)

» TIP[Windows]: Java +RabbitMQ Program Execution

> set CP=.;commons-io-1.2.jar;commons-cli-1.1.jar;rabbitmq-
java-client-bin-x.y.z.jar (terminal window 1&2)
> java -cp %CP% MyConsumer.java (terminal window 1)
> java -cp %CP% MyProducer.java (terminal window 2)

To open a Connection to a RabbitMQ broker a
ConnectionFactory should be first configured (or looked-up).
The configuration includes all the properties need to specify
where and how to connect to the broker.

» Example: Connecting to Localhost Broker

import com.rabbitmq.client.Channel;

ConnectionFactory factory = new ConnectionFactory();
factory.setHost("localhost");
Connection connection = factory.newConnection();
Channel channel = connection.createChannel();

//...use channel to send&recv messages...

channel.close();
connection.close();

» Example: Connecting with URI

ConnectionFactory factory = new ConnectionFactory();
try {

factory.setUri("amqp://user:pass@host:port/vhost");
} catch (KeyManagementException |

NoSuchAlgorithmException | URISyntaxException e) {
...

}
Connection connection = factory.newConnection();
...

» Example: Connecting to Alternative Brokers

Address[] addrs = new Address[]{
new Address(“master-rabbit”, DEFAULT_AMQP_PORT),
new Address(“failover-rabbit”, DEFAULT_AMQP_PORT};

ConnectionFactory factory = new ConnectionFactory();
Connection connection = factory.newConnection(addrs);
...

Once a Connection is open a Channel should be created to
perform message sending and receive operation. Queue,
exchange, and binding declaration operations are also
provided by the Channel API.

Software Engineering School

2

Opening a Connection to a Broker

RabbitMQ Java Client

© EInnovator.org

http://www.einnovator.org/

RabbitMQ – Java Client

In AMQP, messages are routed to Queues for reception, and
sent to Exchanges. Bindings specify the rules by which
Exchanges are connected to Queues.

Queues need to be declared before a message is received
from it or before it is bound to an Exchange. A Queue may
have a name, used as routing key – although, this is not strictly
required. Queue and exchanges are declared with several
properties. Declaring the same queue or exchange with the
same properties is allowed – it works as an idempotent
operation (e.g. both the send and receiver can declare a
queue). On the other hand, it is an error to declare the same
queue or exchange with different properties.

» Example: Declaring a Named Queue

boolean durable = true;
boolean exclusive = false;
boolean autoDelete = false;
channel.queueDeclare(“trading-q”, durable, exclusive,
autoDelete, null);

» Example: Declaring Durable Exchange

channel.exchangeDeclare(“stocks-x”, "fanout", true
/*durable*/);

» Example: Declaring and Binding Auto-Named Queue

channel.exchangeDeclare(“trading-x”, "direct");
String queue = channel.queueDeclare().getQueue();
channel.queueBind(queue, “trading-x”, “” /*routingKey*/);

Messages are sent to RabbitMQ broker by calling
Channel.basicPublish(), using a exchange name and a
(optional) routing key to specify where the message should be
forward.

» Example: Message Publishing to Exchange

byte[] body = "SYM RabbitMQ, 1.23".getBytes();
channel.basicPublish(“stocks-x”, “” /*routingKey*/, null,
body);

The exchange with empty name is predefined as default
exchange. All Queue are bound automatically to this default
exchange, with a routing key that matches the name of the
queue. This means that a producer can send messages to
specific queue by using the default/empty exchange and the
queue name as routing key.

» Example: Publishing to Queue (w/ default Exchange)

byte[] body = "SYM RabbitMQ".getBytes();
channel.basicPublish(“”, “stocks-q”, null, body);

In RabbitMQ API, there is no abstraction that completely
defines a message. A message is made out of a body
modelled as a plain byte array, and list of meta-annotations or
properties modelled with type AMQP.BasicProperties. The
utility class MessageProperties defines several common
property combination values.

» Example: Publish Durable Message

channel.basicPublish(“stocks-x”, routingKey,
MessageProperties.PERSISTENT_TEXT_PLAIN, body);

Several properties are pre-defined, while others are application
defined headers. The class AMQP.BasicProperties.Builder,
implementing the builder design-pattern with a fluent API, is
commonly used created an instance of
AMQP.BasicProperties.

» Example: Publish Message with Properties Set

AMQP.BasicProperties props =
new AMQP.BasicProperties.Builder()

.contentType("text/plain")

.deliveryMode(2 /*durable*/)

.priority(1)

.expiration("2000")

.build();
channel.basicPublish(“stocks-x”, “” /*routingKey*/, props,
msg.getBytes());

Table below summarizes the properties of messages:

Property w/ Example Description

appId(“stock-monitor”) Application ID

clusterId(“emea-cluster”) Cluster ID

contentEncoding(“utf-8”); Character Encoding

contentType(“application/xml”) Content MIME Type

correlationId(UUID.randomUUID()
.toString())

Request-Response
Correlation ID

Software Engineering School

3

Queues, Exchanges, and Bindings

Message Properties

Message Publishing

© EInnovator.org

http://www.einnovator.org/

RabbitMQ – Java Client

deliveryMode(2) Durability: 1 - non-
durable; 2 - durable

expiration(“1000”) Min. time broker keeps
message before
discarding if not
consumed

messageId(“1234567”) Message ID

priority(10) Delivery Priority

replyTo(“stocks-q”) Routing-key to send
response message

timestamp(new Date()) Message creation time

type(“?SYM”) Message category

userId(“admin”) User/Principal ID

Map<String,Object> map = new
HashMap<>();

map.put(“name”, value);

builder.headers(map);

Application defined
headers

In AMQP and RabbitMQ, message can be received from
queue synchronously (pull mode), asynchronously (push
mode). Synchronous reception is done by invoking method
Channel.basicGet() to get a single individual message.

» Example: Synchronous Reception

boolean autoAck = false;
GetResponse msg = channel.basicGet(“trading-q”, autoAck);
 AMQP.BasicProperties props = msg.getProps();
byte[] body = msg.getBody();
long deliveryTag = msg.getEnvelope().getDeliveryTag();
...

Asynchronous reception is done by registering an
implementation of interface Consumer, with method
Channel.basicConsume(). Interface Consumer defines
several callback methods related with message delivery. A
simple approach to create a Consumer is to extend the class
DefaultConsumer, and override only the required methods –
such as handleDelivery() for processing received message.

» Example: Asynchronous Processing with Consumer

channel.basicConsume(“trading-q”, true /*autoAck*/,
"myConsumerTag", new DefaultConsumer(channel) {

@Override
public void handleDelivery(String consumerTag,

Envelope envelope,
AMQP.BasicProperties properties,
byte[] body) throws IOException {

String routingKey = envelope.getRoutingKey();
String contentType = properties.contentType;
long deliveryTag = envelope.getDeliveryTag();

//process message…
 }
 });

A useful implementation of Consumer is provided out-of-the-
box by the Java client API – the QueueingConsumer, that
implements application level queuing of messages.

» Example: QueueingConsumer

QueueingConsumer consumer =
new QueueingConsumer(channel);

channel.basicConsume(“trading-q”, true, consumer);
try {

while (true) {
QueueingConsumer.Delivery delivery =

consumer.nextDelivery();
String msg = new String(delivery.getBody());
//...

}
} catch (ShutdownSignalException e) {}

AMQP and Rabbit MQ supports several types of exchanges
with different routing rules. Table below summarizes the
exchanges types.

Exchange Type Description

direct Route to bound queue(s) based on routing
key

fanout Route to all bound queues(ignores routing
key)

topic Route to bound queues with matching
routing key

headers Route to bound queue with matching
header values

Software Engineering School

4

Message Reception

Exchanges Types

© EInnovator.org

http://www.einnovator.org/

RabbitMQ – Java Client

Topic exchanges can be use to distributed messages based on
pattern matching with the routing key specified by message
publisher. The pattern syntax assumes topic names are
structured as tokens or words separated by dot, such as:
comp.java.rabbitmq. The following wild card are supported:

Wildcard Description

* (star) Match exactly one word

(hash) Match zero or more words

Table below shows some example topic pattern:

Pattern Description

comp.java.# All topics and sub-topics related to Java

comp.amqp.* All topics on AMQP

..rabbitmq Sub-sub-topics on RabbitMQ

Snippet below show how to bind a queue and publish to a topic
exchange.

» Example: Bind and Consume from Topic Exchange

channel.exchangeDeclare(“news-x”, "topic");
String queue = channel.queueDeclare().getQueue();
channel.queueBind(queue, “news-x”, “comp.java.#”);

» Example: Publishing to a Topic Exchange

channel.basicPublish(“news-x”, “comp.java.rabbitmq”, null,
“RabbitMQ Java client updated...”.getBytes());

Message-based communication is at the basic level uni-
directional. However, sometimes is desirable to perform two-
way request-reply interaction between endpoint similarly to
what happens in Client-Server interaction - e.g. using a remote
invocation framework (RPC) or web-service.

The main complication of request-reply is to make sure that the
response message is correlated with the request message,
even in the presence of concurrent requests made by different
Producers. This is achieved by using a dedicate response
queue, and set the value of the message property replyTo to
this response queue. The property correlationID is also set on
the response message to match the correlationID (or
message ID) of the request message.

» Example: Request-Reply Interaction (Client)

replyQ = channel.queueDeclare().getQueue();

String corrId = java.util.UUID.randomUUID().toString();
BasicProperties props = new BasicProperties.Builder()

.replyTo(replyQ)

.correlationId(corrI)

.build();

channel.basicPublish("", "stocks-q", props, msg.getBytes());

QueueingConsumer c = new QueueingConsumer(channel);
channel.basicConsume(replyQ, true, c);
QueueingConsumer.Delivery d;
do { d = c.nextDelivery(); }
while (!d.getProperties().getCorrelationId().equals(corrId));
String reply = new String(delivery.getBody());

» Example: Request-Reply Interaction (Server)

QueueingConsumer c = new QueueingConsumer(channel);
channel.basicConsume("stocks-q", true, c);
while (true) {

QueueingConsumer.Delivery d = c.nextDelivery();
String request = new String(d.getBody());
String reply = “Reply:” + request;
BasicProperties props = d.getProperties()
channel.basicPublish("", props.getReplyTo(),

new BasicProperties.Builder()
.correlationId(props.getCorrelationId()).build(),

reply.getBytes());
}

Because request-reply interaction pattern is commonly used,
RabbitMQ client lib provides the class RpcClient to simplify
the implementation of the client side.

» Example: Request-Reply with Built-in RPC

RpcClient rpc = new RpcClient(channel, “stocks-x”, “”
/*routingKey*/);
String msg = “SYM RabbitMQ”;
byte[] reply = primitiveCall(msg.getBytes());
System.out.println(“RabbitMQ:” + new String(reply));

In the examples above, RabbitMQ Channel was
acknowledging messages automatically. Consumer may also
choose to acknowledge message manually by calling
Channel.basicAck(). A boolean parameter specified is
multiple messages (batch) should be acknowledged.

» Example: Explicit Acknowledge of Messages

channel.basicConsume(“trading-q”, false /*autoAck*/,
"myConsumerTag", new DefaultConsumer(channel) {

@Override

Software Engineering School

5

RPC: Request-Reply Interaction

Ackwnowledges

© EInnovator.org

http://www.einnovator.org/

RabbitMQ – Java Client

public void handleDelivery(String consumerTag,
Envelope envelope,
AMQP.BasicProperties properties,
byte[] body) throws IOException {

//process message…

channel.basicAck(envelope.getDeliveryTag(),
false /*multiple*/);

 }
 });

Messages can also be explicitly rejected by calling
Channel.basicReject(). For rejecting multiple messages, the
method Channel.basicNack() should be used.

» Example: Rejecting an Individual Message

channel.basicConsume(“trading-q”, false /*autoAck*/,
"myConsumerTag", new DefaultConsumer(channel) {

@Override
public void handleDelivery(String consumerTag,

Envelope envelope, AMQP.BasicProperties props,
byte[] body) throws IOException {
if (!isValid(body)) {

channel.basicReject(envelope.getDeliveryTag(),
false /*requeue*/);

}
 }
 });

» Example: Rejecting Multiple Message

public void handleDelivery(String consumerTag,
Envelope envelope, AMQP.BasicProperties props,
byte[] body) throws IOException {
if (!isValid(body)) {

channel.basicNack(envelope.getDeliveryTag(),
true /*multiple*/, true /*requeue*/);

}
}

Multiple messaging operation can be grouped in an atomic
unit-of-work using transactions. Method Channel.txSelect() is
used to setup a Channel in transactional mode. Method
Channel.txCommit() commits a transaction, and method
Channel.txRollback() rollbacks a transaction (usually called
when an Exception occurs).

» Examples: Publishing with Transactions

try {
String[] stocks = {"SYM RabbitMQ = 99.9",

"SYM LinuxLTD = 10.0",

"SYM XMQ = 50.0"};
channel.txSelect();
for (String stock: stocks) {

channel.basicPublish(“”, “stocks-q”, null,
stock.getBytes());

}
channel.txCommit();

} catch (Exception e) {
channel.txRollback();

}

» Examples: Receiving with Transactions

try {
channel.txSelect();
for (int i=0; i<3; i++) {

GetResponse msg = channel.basicGet(“trading-q”,
true);

System.out.println(new String(msg.getBytes()));
}
channel.txCommit();

} catch (Exception e) {
channel.txRollback();

}
...

Java application development can be further simplified with a
more high-level API provided by Spring AMQP. The class
RabbitTemplate is used to send messages and to perform
synchronous reception. This class transparently manages the
life-cycle of resources such as Connection and Channels.
Messaging operation always involves the opening and closing
of a Connection and a Channel. For increased performance
caching of these resources is provided by class
CachingConnectionFactory.

» Example: Publishing with RabbitTemplate

ConnectionFactory cf = new CachingConnectionFactory();

RabbitTemplate template = new RabbitTemplate(cf);

template.convertAndSend("stocks-x", "nasdaq", "SYM
RabbitMQ=99.9");

» Example: Synchronous Receiving with RabbitTemplate

Message msg = template.receiveAndConvert("stocks-q");

MessageProperties props = msg.getMessageProperties();

System.out.println(props.getContentType() + “:” +

new String(msg.getBytes())

Software Engineering School

6

Transactions

Spring AMQP

© EInnovator.org

http://www.einnovator.org/

RabbitMQ – Java Client

Asynchronous reception requires the additional abstraction of
a MessageListenerContainer. Snippet below show how a
Java8 lambda-expression together with a
MessageListenerAdapter can be registered to receive and
process messages.

» Example: Aynchronous Receive with ListenerContainer

SimpleMessageListenerContainer container = new
SimpleMessageListenerContainer(cf);

container.setMessageListener(new MessageListenerAdapter(

(msg)->System.out.println(msg));

container.setQueueNames("stocks-q");

container.start();

A class specific to RabbitMQ is provided to perform
administrative tasks such as declaring queues, exchanges,
and bindings.

» Example: Declaring Queues and Exchanges

RabbitAdmin admin = new RabbitAdmin(cf);

Queue queue = new Queue("stocks-q");

admin.declareQueue(queue);

TopicExchange exchange = new TopicExchange("stocks-x");

admin.declareExchange(exchange);

admin.declareBinding(BindingBuilder.bind(queue).to(exchang
e).with("foo.*"));

• Tutorials on RabbitMQ –
http://www.rabbitmq.com/getstarted.html

• Java Client API Guide – http://www.rabbitmq.com/api-
guide.html

• Spring AMQP Project – http://projects.spring.io/spring-amqp

• Download RabbitMQ –

http://www.rabbitmq.com/download.html

• Git repository for Spring AMQP samples -
https://github.com/SpringSource/spring-amqp-samples

About the Author
Jorge Simão is a software engineer and IT Trainer, with
two decades long experience on education delivery both in
academia and industry. Expert in a wide range of
computing topics, he his an author, trainer, and director
(Education & Consulting) at EInnovator. He holds a B.Sc.,
M.Sc., and Ph.D. in Computer Science and Engineering.

RabbitMQ Training
Take an intensive three-day instructor-led course in+
RabbitMQ, and learn how to setup and develop applications
with RabbitMQ. The course covers RabbitMQ installation
and configuration, developing messaging applications with
the Java APIs, including Spring RabbitMQ, and delves into
more advanced topics including clustering, high availability,
performance, and security. Modules are accompanied by lab
exercises that provide hands-on experience. Book now an
on-site class: www.einnovator.org/course/rabbitmq

++ QuickGuides » EInnovator.org
» Java 8: Lambda Expressions, Streams, Collectors

» Spring Dependency-Injection

» Spring MVC, Spring WebFlow

» and much more...

++ Courses » EInnovator.org
» Java 8 Programming, Enterprise Java w/ JEE

» Core Spring, Spring Web, Enterprise Spring

» BigData and Hadoop, Redis

» and much more...

EInnovator – Software Engineering School

EInnovator.org offers the best Software Engineering resources and education, in partnership with the most
innovative companies in the IT-world. Focusing on both foundational and cutting-edge technologies and
topics, at EInnovator software engineers and data-scientists can get all the skills needed to become top-of-
the-line on state-of-the-art IT professionals.

Training – Bookings & Inquiries
training@einnovator.org

Consultancy – Partnerships & Inquiries
consulting@einnovator.org

General Info
info@einnovator.org

Software Engineering School

Copyright © 2014 EInnovator.org. All rights reserved.

7

Contacts

Resources

http://www.jpalace.org/
http://www.jpalace.org/course/java
http://www.jpalace.org/course/java
http://www.jpalace.org/account/jorge.simao
https://github.com/SpringSource/spring-amqp-samples
http://www.rabbitmq.com/download.html
http://projects.spring.io/spring-amqp
http://www.rabbitmq.com/api-guide.html
http://www.rabbitmq.com/api-guide.html
http://www.rabbitmq.com/getstarted.html
mailto:info@jpalace.org
mailto:feedback@jpalace.org
mailto:training@jpalace.org
http://www.jpalace.org/
http://www.jpalace.org/course/java

	System.out.println(props.getContentType() + “:” +
	new String(msg.getBytes())

