
© EInnovator.org

C
lo

u
d

 F
o

u
n

d
ry

Cloud computing involves the use of virtualized
computing resources, including Hardware - CPUs,
storage, and networking, Software, and Services – to
simplify the processes of application deployment.
Motivating factors include: lower-prices affordable by
economy of scale, reduced time-to-market and faster
development-delivery life-cycle, and/or simply as a way to
outsource missing expertise inside an organization
according to well defined operational interfaces.

Access to a cloud infrastructure for the purposes of
application deployment can be provided at two levels.

• The virtual-infrastructure or Infrastructure-as-
Service (IasS) level - where tools are provided to
create, configure and manage the virtual
computing resources – such as VM instances or
virtual storage devices.

• The could-platform or Platform-as-Service (PasS)
level – where tools are provided to deploy, scale
and manage individual applications.

PasS enabling software is deployed on cloud-resources
provided by a IasS , with the goal of creating a platform
that makes it easy for application developers, system
administrators, and operations staff, to work in an
integrated way and deploy and scale highly-available
applications easily. Internally, a PasS platform uses the
APIs and tools provided by underlying IasS to streamline
and automate the actions and activities that would
otherwise take long time and effort to achieve. The use of
services that applications can connect with (e.g.
databases, or messaging systems), often blends the
distinction between a IasS and a PasS. Diagram below
captures this relationship:

Cloud Foundry is an open-source PasS platform, that
can be deployed in a wide variety of clouds. First-class
support is given to deploy applications in AWS,
OpenStack, vSphere, and others.

To actually deploy Cloud Foundry on a cloud
environment another software tool-chain must be used.
Namely, to create the VMs instances (with selected OS
images) where Cloud Foundry components and
applications will run. Usually the specially-built BOSH
tool-chain is used for this purpose.

Cloud Foundry is largely agnostic about the languages,
run-times, libraries, frameworks, and methodologies used
to build the applications deployed to it. First-class support
is currently given to deploy applications written in Java,
Go, Groovy, Ruby, and PhP, and community provided
extensions support other languages (as buildpacks). Most
components in Cloud Foundry are implemented in the
language Go, while BOSH (and some components in
Cloud Foundry) are implemented in Ruby - but this is
completely transparent and does not have any direct
implication for deployed applications.

A Cloud Foundry installation runs on a multi-VM cloud
distributed environment. The overall architecture is built
out of several components (processes) deployed in
different VMs, that interact internally trough a messaging
system (NATS). A user-interface (CLI or Web-Console) is
used by developers and administrators to deploy and
manage applications. Applications artefacts are bundled
with its run-time dependencies according to the
instructions specified in a language&framework specific
script-collection (a buildpack), to complete a runnable
image - a droplet. Droplets are executed in VMs
managed by a Droplet Execution Engine (DEA).
Application droplets run inside a virtualization container
(Warden) that isolates applications running in the same
VM, making sure that each one takes only their fare-
share of resources (e.g. memory). A Cloud-Controller

+
+

 Q
u

ic
kG

u
id

es
 »

 E
In

n
o

v
at

o
r.

o
rg

4

Software Engineering School

C
o

n
te

n
t

» IasS vs. PasS

» CF Architecture

» CF CLI

» Service Bindings

» Spring Cloud
Jorge Simão, Ph.D.

Cloud Foundry

Cloud Computing: IasS vs. PasS
About Cloud Foundry

Cloud Foundry Architecture

http://www.einnovator.org/
http://www.einnovator.org/quickguide

Cloud Foundry

orchestrates the different action required to stage and control
applications, and provides a REST API that clients (CLI or
Web-Console) can connect with. A database is used to keep all
the meta-data about staged applications and running droplets,
and a blob-store is used to store binary objects such as
applications artefacts and droplets. A Router is used to
dynamically map application URLs to one of the VMs where
application instances are deployed. A Health Manager is
responsible to collect status information about running apps,
and make this information available, so that corrective action
can take place (e.g. replace a missing application instance).

Diagram below illustrates the relationship between Cloud
Foundry components running in a cloud-based distributed
installation.

Whenever an application is pushed to a Cloud Foundry
installation using the CLI, a carefully orchestrated sequence of
steps is followed to make sure the application is staged,
started, scaled, and made accessible. Figure below shows a
time-diagram with these sequence of steps.

Interaction with a Cloud Foundry installation can be done using
a CLI tool (Command Line Interface), named cf. The CLI tool
connects to a Cloud Foundry application controller using a
REST API, and issues commands to push, scale, and
configure applications and services. The CLI can be installed
and run in any of the common OSs (Linux, Mac, Windows),
including/normally from a developer or operator workstation or
laptop.

Running cf without any parameters will prompt it to display the
list of all supported command-line commands organized by
categories. Each command is identified by name, and the most
commonly used ones, also by a single or multi-letter alias.
Optional parameters to commands are specified and identified
by name prefixed by -, while mandatory parameters are
identified positionally just after the command name. The
general syntax of the CLI commands is described below:

» TIP: CLI Command Syntax

$ cf

[env vars] cf [global options] command [args...] [options]

» TIP: Asking for Command Help

$ cf login -h

...
USAGE:
 cf login [-a API_URL] [-u USERNAME] [-p PASSWORD] [-o ORG] [-
s SPACE]

The first step to follow to start using the Cloud Foundry CLI is
to specify the URI of the application controller API, and the
user credentials that authenticate the CLI requests. This can
be conveniently done in a single step with command login (or
l). Optional parameters -u and -p are used to specify user
credentials. If omitted, the username/email and password are
asked interactively. Parameter -a is use to specify the URI of
the Cloud Controller REST API endpoint to connect with.
Alternatively, the command api can be use to set (or show) the
API endpoint. In the examples below, we use mostly the
Pivotal API hosted in AWS: api.run.pivotal.io.

» Example: Login to PWS with CF-CLI

$ cf login -u myuser@myorg.org -p “s3cret!” -a
api.run.pivotal.io

API endpoint: https://api.run.pivotal.io
Authenticating...
OK
Targeted org myorg

Software Engineering School

2

Cloud Foundry Workflow

Command Line Interface (CLI)

© EInnovator.org

http://www.einnovator.org/

Cloud Foundry

Targeted space development
API endpoint: https://api.run.pivotal.io (API version: 2.22.0)
User: myuser@einnovator.org
Org: myorg
Space: development

» Example: Showing and Changing API

$ cf api

API endpoint: https://api.run.pivotal.io (API version: 2.22.0)

$ cf api cf.aws.myorg.org

Setting api endpoint to cf.aws.myorg.org...
OK
API endpoint: https://cf.aws.myorg.org (API version: 2.22.0)
Not logged in. Use 'cf login' to log in.

» Example: Getting API Info

$ curl api.run.pivotal.io/info

{"name":"vcap","build":"2222","support":"http://...”, … }

Table below summarizes the commands supported by the CLI
for basic access to a Cloud Foundry installation:

Command Description

login, l Login to Cloud Foundry API

api Show or Set API

logout, lo Logout from Cloud Foundry API

auth Authenticate user

target, t Set target space or organization

The main purpose of Cloud Foundry is to allow applications to
be deployed and run in a cloud environment. The CLI supports
this with command push (or p). Each application is identified
by a unique name. The location of Application artefacts (files)
is specified with parameter -p. This can be a single file (e.g. a
Java WAR file) or a directory (e.g. the root of a Ruby source
directory tree). If omitted the current directory is assumed. For
some languages like Java, a single file must be specified (a
WAR or runnable JAR). When an application is push a
buildpack is automatically selected. The options -b name|URI
overrides this. Application are pushed to the current space (set
with command target -s), unless option -s space overrides
this.

As the application is being pushed the log details of the
creation of the droplet are streamed to the CLI. The application

is started automatically after the droplet is created, unless the
option –no-start is specified.

A web route is also automatically established (unless option –
no-route is specified), with URI having hostname the name of
the app and with a default domain determined by API connect
to. An alternative hostname the route can be specified with
parameter –n hostname, and an alternative DNS domain
specified with -d domain.

» Example: Pushing Application

$ cf push mypowerapp -p powerapp.war

Creating app mypowerapp in org myorg / space development as
myuser@myorg.org...
OK
Creating route mypowerapp.cfapps.io...
OK
Binding mypowerapp.cfapps.io to mypowerapp...
OK
Uploading mypowerapp...
Uploading app files from: mypowerapp.war
Uploading 3.1K, 10 files
Done uploading
OK
Starting app mypowerapp in org myorg / space development as
myuser@myorg.org...
...
App started
...

The command apps (or a) displays the list of pushed
application with its details such as status and scale
parameters, such as number of instances, and allocated
memory. The command app display the status of an individual
app. (The details are showed when the app is pushed.)

» Example: Listing Applications

$ cf apps

Getting apps in org myorg / space development as ...
OK
name requested state instances memory disk urls
mypowerapp started 1/1 1G 1G
mypowerapp.cfapps.io

» Example: Getting Application Status and Details

$ cf app mypowerapp

Showing health and status for app mypowerapp in org myorg ...
OK
...
requested state: started
instances: 1/1
usage: 1G x 1 instances
urls: mypowerapp.cfapps.io
last uploaded: Wed Feb 11 10:24:13 UTC 2015
 state since cpu memory disk
#0 running 2015-02-11 10:24:51 AM 0.0% 129.8M of 1G 107M

Software Engineering School

3

Pushing Applications

© EInnovator.org

http://www.einnovator.org/

Cloud Foundry

of 1G

Once an application is pushed it can be rescaled with
command scale – including, the number of instances –
parameter -i nInstances, the memory allocated to each
instance – parameter -m memSize, or the temporary disk
quota allocated to each instance – parameter -k diskSize.
Option -f forces application restart.

» Example: Scaling an Application

$ cf scale mypowerapp -i 2 -m 512M -k 128M -f

Scaling app mypowerapp in org myorg / space development as ...
OK
Stopping app mypowerapp in org myorg / space development as ...
OK
Starting app mypowerapp in org myorg / space development as …
0 of 2 instances running, 2 starting
2 of 2 instances running
App started
...
requested state: started
instances: 2/2
usage: 512M x 2 instances
urls: mypowerapp.cfapps.io
last uploaded: Wed Feb 11 10:24:13 UTC 2015

 state since cpu memory disk
#0 running 2015-02-11 11:54:51 AM 0.0% 128.6M of 512M
107M of 128M
#1 running 2015-02-11 11:54:44 AM 1.5% 135.2M of 512M
107M of 128M

Application and instance status can be changed with
commands: stop (or sp) – to stop an application; start (or st)
– to start an application; restart (or rs)- to restart; restart-app-
instance – to restart the app instance with specified index.
Command restage (or rg) recreates the droplet of an
application, without pushing a new release (required after
changing environment variables that affect the the buildpack).

Table below summarizes the commands supported by Cloud
Foundry CLI used to push and stage applications:

Command Description

push, p Push an application

apps, a List pushed applications

app Show app status and details

scale (re)Scale application

restage, rg Restage application

stop,sp Stop application

start,st Start application

restart,rs Restart application

restart-app-instance Restart specific application instance

Application instances aggregated logs can be inspect with
command logs – the tail of the logs. Option –recent show last
entries in the logs. Command events show recent life-cycle
events for an app.

» Example: Show App Recent Aggregated Logs

$ cf logs –recent mypowerapp

» Example: Show Recent App Life-Cycle Events

$ cf events mypowerapp

Cloud Foundry allows applications to connect and use external
services to support their business functionality – such as, a
data-base to read/write data, or a messaging system to
communicate asynchronously with other applications. Pre-
configured or externally managed services are available
through a service directories designated marketplaces. The
CLI command marketplace (or m) lists all available services in
a marketplace, and corresponding plans (pricing vs. feature
model). With option -s service show the descriptions of the
plans.

» Example: Show List of Services in Marketplace

$ cf marketplace

Getting services from marketplace in org myorg / space ... OK
service plans description
...
cleardb spark, boost*, amp*, shock* Highly available MySQL...
cloudamqp lemur, tiger*, bunny*, ... Managed HA RabbitMQ...

» Example: Show Details of a Service

$ cf m -s cloudamqp

Getting service plan information for service cloudamqp as … OK
service plan description free or paid
lemur Shared cluster with low limits for free free
tiger Shared cluster for production apps paid
...

The command create-service (or cs) requests for a service
(instance) to be provisioned to be used by applications – i.e.

Software Engineering School

2

Service Bindings

Logging

© EInnovator.org

http://www.einnovator.org/

Cloud Foundry

the Cloud Controller asks to the service provider to allocated
and setup whatever resources and configuration required for
application to use a service. Service instance creation is bound
to a space (in an organization). The command services (or s)
display the list of all service instances provisioned in the
current target space, and command service show the details
for a single provisioned service. The plan for a service instance
can be updated with command update-service. The name can
be changed with command rename-service. A service
instance can be delete with command delete-service (or ds).

» Example: Help on create-service

$ cf create-service -h

...
USAGE:
 cf create-service SERVICE PLAN SERVICE_INSTANCE

» Example: Create/Provision a Service (Instance)

$ cf create-service cleardb spark mysql

Creating service mysql in org myorg / space development … OK

$ cf cs cloudamqp lemur amqp

Creating service amqp in org myorg / space development ...

» Example: List Service Instances (in current target Space)

$ cf services

Getting services in org myorg / space development as ... OK
name service plan bound apps
amqp cloudamqp lemur
mysql cleardb spark

» Example: Show Details of a Service Instance

$ cf service mysql

Service instance: mysql
Service: cleardb
Plan: spark
Description: Highly available MySQL for your Apps.
Documentation url:
Dashboard: https://cloudfoundry.appdirect.com/...?serviceUuid=22...

A service instance can not be used by an application until it is
explicitly bound to the application. This is done with command
bind-service (or bs). The effect of this is to make the details
about the service instance, including access URL and
credentials, available in the environment of an application (in
variable VCAP_SERVICES). The app still has the
responsibility to lookup this informations from the environment
and use it to configure an appropriate driver to connect to the
service. Any number of apps can bind to the same service
instance. The command unbind-service (or us) remove the
binding of an app to a service instance.

» Example: Bind Service Instances to App

$ cf bind-service mypowerapp mysql

Binding service mysql to app mypowerapp in org myorg / space ...

$ cf bind-service mypowerapp amqp

» Example: Confirm Service Instances are Bound to App

$ cf services

Getting services in org myorg / space development as ... OK
name service plan bound apps
amqp cloudamqp lemur mypowerapp
mysql cleardb spark mypowerapp

It is also possible to bind application to service (instances) that
are not available in the marketplace, with command create-
user-provided-service (or cups). All the information
necessary to connect to the service, such as URL and
credentials, is specified with parameter -p – either using a
JSON object ({ name:value, ..}) as syntax, or by specifying a
comma separated list of attribute names whose values are
asked interactively. This service information will be available to
bound applications in the environment as is the case with
marketplace services.

» Example: Create User Provided Service

$ cf cups mydb -p '{"url":"jdbc:mysql:db.myorg.org”,
"user":"myuser","password":"s3cret”}'

Creating user provided service mydb in org myorg / space .. .

» Example: Create User Provided Service (Windows)

$ cf cups mydb -p
"{"""url""":"""jdbc:mysql:db.myorg.org""","""user""":"""myuser"""
,"""password""":"""s3cret"""}"

Table below summarizes the CLI commands related to
services used by developers.

Command Description

marketplace, m List services in marketplace

create-service, cs Create/Provision service instance

update-service Change plan for service instance

rename-service Change name of service instance

delete-service Delete service instance

services, s List provisioned services

service Show service instance details

Software Engineering School

5

© EInnovator.org

http://www.einnovator.org/

Cloud Foundry

bind-service,bs Bind service to application

create-user-provided-
service, cups

create user provided (non
marketplace) service

update-user-provided-
service, uups

update user provided (non
marketplace) service

All the settings specified when an app is pushed can be
conveniently specified in a manifest (configuration) file, written
in YAML syntax. By default, a file named manifest.yml in the
current work directory is used as manifest, unless an
alternative is specified with push option -f. A manifest file can
configure a single or multiple apps. The use of a manifest file
makes the app-name parameter optional in command push –
the name found in the manifest is used. With multiple app
manifest files, omitting the app name in the push command
pushes all apps. If a name is specified, only the app with that
name is pushed. Manifest settings overwrite previous
command settings, but settings in the current push command
overwrite manifest settings.

Application settings are done under field named applications,
whose value is a list of value objects – one per application –
whose field name designates the app. Settings common to all
apps are specified as fields outside the field applications.
[YAML supports both inline and block syntax-style to define
objects. Symbol – is used to define items in list values (block),
or list syntax [.., ..] (inline). Fields are defined as name : value
(inline), or with the value in a newline (block).]

» Example: Manifest File for a Single App (manifest.yml)

applications:
- name: mypowerapp
 memory: 512M
 instances: 2
 host: mypowerapp
 hosts:
 - mightypowerapp
 - superpowerapp
 path: ./mypowerapp.war
 services:
 - amqp
 - mysql
 env:
 defaultLocale: en-US
 spring.profiles.active: dev,jpa

» Example: Push App with Single App Manifest

$ cf push

» Example: Use Alternative Manifest File

$ cf push -f manifest2.yml

» Example: Manifest File for Multiple Apps

domain: myorg.org
services:
 - amqp
 - mysql
env:
 spring.profiles.active: dev,jpa
applications:
- name: mypowerapp
 instances: 2
 memory: 512M
 path: ./mypowerapp.war
 env:
 defaultLocale: en-US
- name: otherpowerapp
 instances: 1
 memory: 512M
 path: ./otherpowerapp.war

As it also the case in non-cloud scenarios, application
deployed trough Cloud Foundry have available to them a set of
externally defined settings that can be used to influence its
bootstrap configuration or running behavior – the
Environment. Some environment variables are automatically
set by the Cloud Foundry, including:

• VCAP_APPLICATION – JSON object with application
detail (e.g. name, scaling limits, URIs, etc.)

• VCAP_SERVICES – JSON object with list and details
of services instance an application is bound to.

Customer environment variables are set with command set-
env (or se), and removed with command unset-env. The
command env (or e) show the list of all environment variables.

» Example: Set App Custom Environment Variables

$ cf set-env mypowerapp defaultLocale en-UK

Setting env variable 'spring.profiles.active' to 'dev' for app ...

$ cf set-env mypowerapp spring.profiles.active dev

» Example: Display App Environment Variables

$ cf env mypowerapp

Getting env variables for app mypowerapp in org myorg / space ...OK
System-Provided:
{ "VCAP_SERVICES": {
 "cleardb": […],
 "cloudamqp": […],
 "user-provided": [{ "credentials": { .. } , … }, …]}
{ "VCAP_APPLICATION": {
 "application_name": "mypowerapp",
 … }
}

Software Engineering School

6

Manifest Files

Environment Variables

© EInnovator.org

http://www.einnovator.org/

Cloud Foundry

User-Provided:
defaultLocale: en-US
spring.profiles.active: dev

Table below summarizes environment related CLI commands.

Command Description

env, e List all environment variables

set-env, se Set custom environment variable

unset-env Unset custom environment variable

Spring Cloud is a collection of projects that simplifies the way
Java application operate in a Cloud environment. Spring
Cloud Core and Spring Cloud Connectors projects, in
particular, allows application to easily access and parse
environment variables such as VCAP_APPLICATION and
VCAP_SERVICES, and create drivers for bound service
instances. The Java class Cloud provides an API that
encapsulates access to app instance information and the
service instance. A pluggable mechanisms (based on Java
services SPI) allows the Cloud Foundry specifics to be
automatically enabled.

» Example: Getting Cloud App Info with Spring Cloud

CloudFactory cloudFactory = new CloudFactory();
Cloud cloud = cloudFactory.getCloud();
ApplicationInstanceInfo info = cloud.getApplicationInstanceInfo();
writer.format("AppId: %s\n", info.getAppId());
writer.format("InstanceId: %s\n", info.getInstanceId());
writer.format("Properties: %s\n", info.getProperties());

» Example: Getting Info on Bound Services Instances

List<ServiceInfo> services = cloud.getServiceInfos();
for (ServiceInfo service: services) {

writer.format("Service: %s
\n", service.getId());
}

• Cloud Foundry Documentation - http://docs.cloudfoundry.org/

• Pivotal Cloud Foundry Page – http://www.pivotal.io/platform-
as-a-service/pivotal-cloud-foundry

• Spring Cloud Project - http://projects.spring.io/spring-cloud

• Git repository for Cloud Foundry -
https://github.com/cloudfoundry

About the Author
Jorge Simão is a software engineer and IT Trainer, with
two decades long experience on education delivery both in
academia and industry. Expert in a wide range of
computing topics, he his an author, trainer, and director
(Education & Consulting) at EInnovator. He holds a B.Sc.,
M.Sc., and Ph.D. in Computer Science and Engineering.

Cloud Foundry Training & Consulting
Take a three-day instructor-led course in Developing
Applications with Cloud Foundry and PCF. The course
provides hands-on experience on deploying and managing
applications in Cloud Foundry, using the CLI tool and Web-
Console, and guides you trough the internal components
and architecture of Cloud Foundry, staging workflow, admin
concepts, service bindings, build-packs, logging, monitoring,
and Spring Cloud. Consulting sessions on the follow-up of
training also available. Book now an on-site class:
www.einnovator.org/course/cloud-foundry-developer

++ QuickGuides » EInnovator.org
» Java 8: Lambda Expressions, Streams, Collectors

» Spring Container, Spring MVC, Spring WebFlow

» RabbitMQ, Redis

» and much more...

++ Courses » EInnovator.org
» Java 8 Programming, Enterprise Java w/ JEE

» Core Spring, Spring Web, Enterprise Spring

» RabbitMQ, Redis

» and much more...

EInnovator – Software Engineering School

EInnovator.org offers the best Software Engineering resources and education, in partnership with the most
innovative companies in the IT-world. Focusing on both foundational and cutting-edge technologies and
topics, at EInnovator software engineers and data-scientists can get all the skills needed to become top-of-
the-line on state-of-the-art IT professionals.

Training – Bookings & Inquiries
training@einnovator.org

Consultancy – Partnerships & Inquiries
consulting@einnovator.org

General Info
info@einnovator.org

Resources

Software Engineering School

Copyright © 2014 EInnovator.org. All rights reserved.

7

Contacts

Spring Cloud

http://www.einnovator.org/course/cloud-foundry-developer
http://www.jpalace.org/course/java
http://www.jpalace.org/account/jorge.simao
https://github.com/cloudfoundry
http://projects.spring.io/spring-cloud
http://www.pivotal.io/platform-as-a-service/pivotal-cloud-foundry
http://www.pivotal.io/platform-as-a-service/pivotal-cloud-foundry
http://docs.cloudfoundry.org/
mailto:info@jpalace.org
mailto:feedback@jpalace.org
mailto:training@jpalace.org
http://www.jpalace.org/
http://www.jpalace.org/

