
© EInnovator.org

S
p

ri
n

g
 X

D

Spring XD is a distributed runtime and toolset that
integrates the real-time data streams and the batch
processing models, combined with pre-build modules for
data-ingesting and data-export from/to a wide-range of
storage systems in a BigData environment. Spring XD
provides a high-level DSL (Domain-Specific Language)
used to define distributed data-processing pipelines –
Streams, loosely inspired in the UNIX pipes model. Each
stream is defined as a pipeline of modules, that are
deployed in different containers running as a distributed
system and inter-communicate trough a reliable
messaging system. Jobs can be triggered to process
complete data-sets, while stream modules process data
piecewise. Analytics functions are also available to
describe and analyse streams data interactively.

Spring XD leverages on widely-used and proven
technologies, such as Spring Integration to define the
modules in a stream, Spring Batch to define Jobs,
Apache Zoo Keeper for distributed state management,
distributed coordination, and high-availability, YARN for
distributed deployment and resource management, and
NoSql databases and messaging systems, such Redis
and RabbitMQ, for inter-module communication.

Spring XD architecture is made of several components,
possibly deployed in a distributed environment, following
a controller–worker-pool design-pattern. The XD Admin
server is a controller that exposes a REST API to allow
client apps to define, deploy, and manage streams,
modules, and jobs. XD Containers are worker processes
that deploy/run the streams, modules, and jobs on
request of the XD Admin. The XD Admin and XD
Containers communicate and coordinate deployments
indirectly through Zoo Keeper. Nodes in a Zoo Keeper
managed tree represent the intended state of the overall
system, and Zoo Keeper triggered notifications are used
to respond to changes in the system state. The XD Shell
is a CLI (Command Line Interface) tool that provides a
convenient way to access the services of the XD Admin.
The XD Web UI provides an alternative interface to XD

Admin services as a web-app. Streams are defined as a
pipeline of Modules. Modules are distributed across
available XD Containers, and exchange data using a
messaging middleware – such as Redis, RabbitMQ, or
Kafka. Modules deployment can be replicated across
several XD Container for high-availability and increased
throughput. Messages sent from the previous module in
the stream are load-balanced among the different
instance of the module next in the stream. Jobs are also
deployed and run within the containers. A database is
used use keep track of job progress and allow for
recovery case a job fails or the XD container where it is
running fails. An additional database is used to keep the
result of analytics operations performed on streams.
Figure below depicts Spring XD overall architecture.

Spring XD can run in two modes: single-node mode –
used for development and testing, and distributed mode –
for production high-availability, high-throughput usage. In
single-node mode all the components necessary to run
Spring XD are started embedded in a single process,
including – the XD Admin server, a single XD Container,
and a single embedded Zoo Keeper server. In-memory
communication is also used as replacement for the
messaging broker, and an embedded HSQLDB is used.
The client application XD Shell still has to be run in a
separated terminal window.

XD Admin
(leader)

XD Container

XD Shell#

XD Web UI

Zoo Keeper

REST
API

xd:>

MessagingMiddleware
(Redis, RabbitMQ, Kafka)

Module

Batch
Repository

Analytics
Repository

Stream

Job

+
+

 Q
u

ic
kG

u
id

es
 »

 E
In

n
o

v
at

o
r.

o
rg

5

Software Engineering School

C
o

n
te

n
t

» Spring XD Architecture

» Spring XD Shell

» Streams DSL

» Built-in Modules

» Jobs
Jorge Simão, Ph.D.

Spring XD

About Spring XD

Spring XD Architecture

Spring XD Installation

http://www.einnovator.org/
http://www.einnovator.org/quickguide

Spring XD

» TIP: Downloading Spring XD

> wget http://repo.spring.io/release/org/springframework/xd/
spring-xd/1.1.1.RELEASE/spring-xd-1.1.1.RELEASE-dist.zip

» TIP [MacOS]: Downloading Spring XD

$ brew tap pivotal/tap
$ brew install springxd

» TIP: Configure Environment Variables for Spring XD

set XD_HOME = .../spring-xd-1.1.0.RELEASE/xd
set PATH = $PATH:.../ spring-xd-1.1.1.RELEASE/xd/bin:.../
spring-xd-1.1.1.RELEASE/shell/bin

» TIP: Starting Spring XD Single Node

> xd-singlenode

 _____ __ _______
/ ___| (-) \ \ / / _ \
\ `--. _ __ _ __ _ _ __ __ _ \ V /| | | |
 `--. \ '_ \| '__| | '_ \ / _` | / ^ \| | | |
/__/ / |_) | | | | | | | (_| | / / \ \ |/ /
____/| .__/|_| |_|_| |_|__, | \/ \/___/
 | | __/ |
 |_| |___/
1.1.0.RELEASE eXtreme Data
Started : SingleNodeApplication
... - Transport: local
... - Admin web UI: http://myhost:9393/admin-ui
... - Zookeeper at: localhost:32526
... - Analytics: memory
... - Started AdminServerApplication in 23.545 seconds
... - Container hostname: myhost
... - Hadoop Distro: hadoop26
... - Container {ip=192.168.1.4, host=myhost, groups=,
pid=6756, id=7b3745c4-7002-4b6d-9d75-a1
3ab7cd418b} joined cluster

In distributed mode, the XD admin, one or more XD containers,
Zoo Keeper, and the messaging broker need to be started
separately. Support databases for the jobs/steps state and
analytics should also be started. (see last section)

The Spring XD Shell is an interactive CLI tool that supports a
wide-range of commands to define, deploy, and list the status
of streams, jobs, and related abstractions. It provides also a
variety of utility commands such as running local OS/Shell
commands, make HTTP requests, and operate on
Hadoop/HDFS. XD Shell works as REST client to XD Admin –
both in single-node and distributed mode.

» TIP: Starting Spring XD Shell CLI

> xd-shell

eXtreme Data
1.1.0.RELEASE | Admin Server Target: http://localhost:9393

xd :>

» Example: Connecting to Remote XD Admin

xd:> admin config server http://somehost:9393

Successfully targeted http://somehost:9393

xd:> admin config info

 Result Successfully targeted http://somehost:9393
 Target http://somehost:9393
 Timezone used Greenwich Mean Time (UTC 0:00)

» Example: Asking for Help on Command

xd:> help http post

» Example: Posting an HTTP Request

http post --data "{id:123,code:'xpad'}" --contentType
application/json --target http://localhost:9000

Table below summarizes the XD Shell utility commands:

Command Description

admin config info Show XD Admin server details

admin config server Set the XD Admin server to use

admin config
timezone list

List all timezones

admin config
timezone set

Set timezone of the Spring XD Shell

script Execute Spring XD command script

http get Make GET request to http endpoint

http post POST data to http endpoint

help | help command List all or specific commands usage

version Displays shell version

clear, cls Clears the console

quit, exit Exits the shell

runtime containers List runtime containers

! command Execute OS/local-shell command

In addition to the XD Shell, it is also possible to interact with
XD Admin using a Web UI. The GUI is available (by default) on
URL: http://localhost:9393/admin-ui

A Stream is defined as a pipeline of modules that process
messages triggered by events. Command stream create is
used to define a stream, giving it a name and a definition. A
stream definition is done using a syntax loosely inspired in

Software Engineering School

2

Spring XD Shell and Web Console

Streams DSL

© EInnovator.org

http://www.einnovator.org/

Spring XD

Unix pipes, with operator | separating different modules in the
stream. A key characteristic of Spring XD, distinct from classic
Unix pipes, is that XD modules are deployed to different XD
containers – usually distributed over the network, so inter-
module communication requires a messaging middleware. The
first module in a stream has the role of event/message source,
while the last module in the stream has the role of a sink.
Intermediate modules are generically named processors, and
can perform both transforming and/or filtering function. A
common/canonical structure for a stream is:

source | filter | transform | sink

Modules accept implementation dependent named parameters
set with syntax --param=value. The list of parameters for a
module can be displayed with help command module info.
Modules can be named with a label using syntax:
label:module. This is useful when the same module name is
used multiple times in a stream, and/or needs to be reference
elsewhere, such as when defining a tap.

The communication channel connecting modules is by default
anonymous, but named channels can also be defined and
used as sources with syntax queue:name > or as sinks with
syntax > queue:name. The prefix topic: can also be used for
publish-subscriber channels.

When a stream is defined with command stream create it can
be automatically deployed with parameter --deploy.
Alternatively, the command stream deploy can be used to
deploy a stream. Command stream list displays the list of
defined stream and their status.

» Example: Define and Deploy Stream (with 2 Modules)

stream create --name http2file --definition “http | file” --deploy

stream create --name ticktock --definition “time | log” --deploy

 stream create --name f2log --definition "file
--outputType=text/plain | log --inputType=text/plain" --deploy

» Example: Define a Stream (with 3 Modules)

stream create --name tx --definition “http | transform
--expression “payload.trim().toUpperCase() | file --name out”

» Example: Listing Streams Status

xd:> stream list

Stream Name Stream Definition Status
----------- ----------------- --------
http2file http | file deployed
ticktock time | log deployed

» Example: Defined Streams to Write/Read to/from DB

stream create --name t2db --definition "time | jdbc

--initializeDatabase=true" --deploy

stream create --name dump_t2db --definition "jdbc
--query='select * from t2db' | log" –deploy

» Example: Ask Help on Module Parameters

module info source:time

module info sink:file

» Example: Steams Definitions with Named Channels

http > queue:incoming
queue:incoming > log
queue:incoming > file

A tap is a special type of stream that takes its input from
another stream (or job) without affecting the tapped message
flow. A tap on a stream is created with command and syntax
create stream tap:stream:name[.module] > ..., where name
specifies the tapped stream. If .module is omitted the input
channel to the stream source is tapped, otherwise it is the
input channel to the specified module. The module name can
be actual name of the module (if unique) or a label. Taps are
specially useful when performing analytics on streamed
messaged.

Command module compose is used to create reusable
composite modules built out of a pipeline of existing modules
like a stream, but where the component modules are deployed
in the same XD Container and communicate using in-memory
local message-passing. This increases performance,
compared to using the messaging middleware.

» Example: Define Error Logging Tap

stream create --name errors --definition “tap:stream:indata >
filter –expression “payload.contains('Error') | log”

» Example: Tap Stream on Module Input

stream create --name data --definition “http | filter
--expression '!payload.isEmpty()' | file”

stream create --name filtered --definition “tap:stream:data.file
> log”

» Example: Create and Use Composite Module

module compose --name logerrors --definition "filter
--expression=payload.contains('ERROR') | log"

stream create --name err2log --definition "http | logerrors"
stream create --name ferr2log --definition "file | logerrors"

Table below summarizes the XD Shell commands for streams
and modules:

Software Engineering School

3

© EInnovator.org

http://www.einnovator.org/

Spring XD

Command Description

stream create Create a new stream definition

stream deploy Deploy a previously created stream

stream list List created streams

stream undeploy Undeploy previously deployed stream

stream destroy Destroy an existing stream

stream all undeploy Undeploy all deployed streams

stream all destroy Destroy all existing streams

module info Get information about a module

module list List all modules

module compose Create a composite module

module upload Upload a new module

module delete Delete a virtual module

runtime modules List deployed module instances

The command stream deploy includes an optional parameter
--properties that specifies the details how a stream should be
deployed. By default each module in a stream is deployed to a
single XD Container, and modules are distributed to containers
in a round-robin fashion. Property module.name.count
specifies the number of instances/replicas for a module. A
value of 0 specifies that the module should be deployed to all
available containers. A name * sets the property for all
modules. The selected XD Containers for module instances
can be set explicitly with property module.name.criteria. The
value is a SPEL script expression that refers Container
attributes such as: id, host, ip, pid, or group for membership
tests. (The groups of a container can be specified with
command-line option --groups or environment variable
XD_CONTAINER_GROUPS). Command runtime containers
displays the list of available XD Containers and their groups.
Command runtime modules shows to which Containers
modules are deployed.

» Example: Deploying Stream with Replicated Module

stream create --name http2file --definition “http | log”
stream deploy --name http2file –properties
“module.*.count=3"

» Example: Replicate Module with Criteria

stream deploy --name http2file --properties
“module.log.criteria=groups.contains('logger')"

Instances of the same module listen to the same input
channel, and messages are load-balanced between the
instances. It also possible to control which messages are
delivered to each module instance, by partitioning the stream.
Property module.name.producer.partitionKeyExpression
(or partitionKeyExtractorClass) is applied to a module output
messages to determine the partitioning key for each message.
Property
module.name.producer.partitionSelectorExpression (or
partitionSelectorClass) is applied to a module to determine
which instance gets each message from the key. If this
property is not specified, the expression key.hashCode()
%count is used.

» Example: Deploying Partitioned Stream

stream create --name http2file --definition “jms | transform –
expression=#processor(payload) | log”

stream deploy --name partitioned --properties
"module.jms.producer.partitionKeyExpression=payload.id,mo
dule.transform.count=3"

Table below summarizes the properties for a stream
deployment:

Property Description

module.name.count Number of module instance

module.name.criteria Criteria to deploy module
across containers

module.name.producer.
partitionKeyExpression |
partitionKeyExtractorClass

SpEL Expression or Java class
to generate partition key for
message

module.name.producer.
partitionSelectorExpression |
partitionSelectorClass

SpEL Expression or Java class
to select container / module-
instance for message

Spring XD provides a wide-range of built-in modules that can
be conveniently composed to implement rich stream
processing, data ingestion and data export workloads.
Command module list displays the list of available modules –
including built-in and possibly custom ones – organized in
columns for categories: source, processor, sink, and jobs.
Table below summarizes some of the Spring XD built-in source
and sink modules:

Module & Parameters Description

source:file --dir [–pattern --fixedDelay Pool directory for files

Software Engineering School

4

Replicated Modules and Partitioned Streams

Built-in Modules

© EInnovator.org

http://www.einnovator.org/

Spring XD

--preventDuplicates --ref --outputType]

sink:file [--name --suffix --dir --mode
--binary --charset --inputType]

Write files to directory

source:http [--port --https
--outputType --messageConverterClass]

Accept HTTP connections
and send request message

sink:log [--level --name --expression
--inputType]

Log messages in container

source:time [--initialDelay --timeUnit
--fixedDelay -- format --outputType]

Send periodic time
message

source:trigger [--cron | --initialDelay
–fixedDelay | --date][--payload]

Send message w/ payload
on schedule date-time(s)

source:jdbc --query [--url
--fixedDelay --maxRowsPerPoll --update]

Read data from DB with
SQL query

sink: jdbc --tableName --columns [--
url --initializeDatabase]

Write message stream to
DB

source:jms --destination --pubSub
--provider --outputType

Read message form JMS
destination

sink:hdfs [--fileName --rollover
--overwrite]

Write/Append HDFS file

source:syslog-tcp
source:syslog-udp [--port]

Start syslog server and
receive log entries

source:mail [--host --port
---fixedDelay --protocol --username
--password]

Receive POP/IMAP
message

sink:mail [--host --port ---from –to
--subject --username --password]

Send SMTP message

source:rabbit [--addresses --queues
--ackMode --transacted]

Receive from RabbitMQ
queue

sink:rabbit [--addresses --exchange
--routingKey --deliveryMode]

Send to RabbitMQ
exchange

source:kafka [--topic] Receive from kafka topic

sink:kafka [--topic --batchCount] Send to kafka topic

source:twittersearch --query
source:twitterstream --follow

Search and stream Tweets

source:gemfire --region
source:gemfire --query

GemFire region lookup
GemFire continuous query

source:gemfire-server --region Wrtie to GemFire Server

Table below summarizes Spring XD built-in processor modules
and selected parameters:

Module & Parameters Description

fransform --expression Transform message

filter --expression Filter message

aggregator [--aggregation –
correlation –release --count]

Aggregate multiple messages into
single one

splitter [--expression] Split message into multiple
messages

script --script [--variables] Execute SpEL script

Shell –command [--workingDir] Exectur Shell script (e.g. bash)

json-to-tuple Map JSON to XD tuple

object-to-json Marshall object to JSON

bridge Simple SI bridge

It also possible to develop and install custom modules, defined
as Spring Integration component networks. Modules should be
package has a .jar file under directory custom-
modules/module-name. A single .xml or .groovy file, under
sub-directory config/, defines the spring managed
components to load in an ApplicationContext. As convention,
source modules should produce messages to a Spring
Integration channel named output; sink modules should
consume messages from a channel named input; and
processor modules should consume from channel input and
produce messages to channel output. Property placeholders
for module property are also supported in the context file. Each
module run in a dedicated ApplicationContext using a
dedicated Java ClassLoader. Command module upload is
used to install a custom module.

A Job is a module implemented with Spring Batch, that can be
started from Spring XD. Jobs differs from streams in that input
data for Jobs is fully available when the Job starts, while
streams' data is obtained piece-wise in response to events.
Jobs can also keep track of progress in persistence storage
(job repository), so they can be reliably restarted from the point
where they failed or were they where stopped. Job execution
can be triggered by Spring XD on explicit request or triggered
by a stream message arriving to the job input channel.
Command job create defines a job by specifying the module
name and parameters. (Currently, the Spring XD DSL does not
support for the job structure to be defined from the XD Shell.
This needs to be done with the Spring Batch XML DSL.)
Command job deploy deploys a job. Alternatively, the optional
parameter --deploy of job create automatically deploys a job
when it is defined. A deployed job is not started, unless it is
lunched.

Software Engineering School

5

Custom Modules

Jobs

© EInnovator.org

http://www.einnovator.org/

Spring XD

» Example: Define, Deploy, and Lunch a Job

job create --name prod2db --definition "filejdbc
--resources=file:///tmp/xd/test.csv --names=id,name,price
--tableName=products --initializeDatabase=true" --deploy

job lunch products2db

» Example: List Deployed Jobs and Job Instances

xd:> job list

Job Name Job Definition Status
-------- ---------------------------------- ---------
prod2db filejdbc –resources=file://tmp/... deployed

xd:> job execution list

Id Job Name Start Time Step Execution Count Execution Status
Deployment Status Definition Status
-- ------- ----------------------- --------------------
3 prod2db 2015-04-01 18:42:01,171 2 COMPLETED
Deployed Exists

» Example: Configuring XD Shell for Hadoop

xd:>hadoop config fs hdfs://localhost:9000

» Example: Importing Files to Hadoop

xd:>hadoop fs mkdir /xd
xd:>hadoop fs chmod --mode 777 /xd

xd:>job create --name f2h --definition "filepollhdfs
--names=id,name,price" –deploy
xd:>stream create --name f2h --definition "file --ref=true >
queue:job:f2h" –deploy

xd:>! cp products.csv /tmp/xd/input/f2h
xd:>hadoop fs ls /xd/f2h
xd:>hadoop fs cat /xd/f2h/f2h-0.csv

Table below summarizes Spring XD commands for jobs:

Command Description

job create Create a job

job deploy Deploy a previously created job

job launch Launch previously deployed job

job list List all jobs

job undeploy Un-deploy an existing job

job destroy Destroy a job

job all destroy Destroy all jobs

job all undeploy Un-deploy all jobs

job instance display Display details about a Job Instance

job execution display Display details of a Job Execution

job execution list List all job executions

job execution restart Restart failed or interrupted job

job execution stop Stop a running job execution

job execution step list List step executions for job execution

job execution step
display

Display the details of a Step
Execution

job execution step
progress

Get progress info for a step execution

job execution all stop Stop all running job executions

Spring XD provides several built-in jobs that can be used to
perform common data import/export tasks, such as:
import/export data from CSV files, to/from JDBC/RDBMS, and
Hadoop HDFS. Command module list displays the list of
available job modules. Table below summarizes Spring XD
built-in job modules and job specific parameters. All build-in
jobs support also a common set of parameters – restartable,
commitInterval, makeUnique, dateFormat, numberFormat,
listeners.

Job Module & Parameters Description

filejdbc --resources --names [--delimiter]
--deleteFiles –initializeDatabase –tableName
[--driverClassName] –url

import CSV file content
to DB

filepollhdfs –directory –names [--fileName
| -fileExtension, –deleteFiles –fsUri --rollover]

Import file to HDFS

ftphdfs --host –port {"remoteDirectory”,
“hdfsDirectory"}

Import FTP dir to HDFS

hdfsjdbc --resources --names [--delimiter]
–initializeDatabase –tableName [–url]

Import to DB from HDFS

jdbchdfs [--sql | --tableName –columns]
--fileName [–url --delimiter --rollover –fsUri]

Import to HDFS from DB

hdfsmongodb --resources --names –
databaseName –collectionName [--delimiter
–host –port --idField --writeConcern]

Import to MongoDB from
HDFS

sqoop --command [--args –url –fsUri] Call Sqoop Job

sparkapp --mainClass –appJar [--master] Call Spark Stream/Job

When running Spring XD in distributed mode, the support
services need to be started separately and before hand,
including: a database – HSQLDB by default, MySQL or
PostGres as alternatives, ZooKeeper, and a messaging
middleware – Redis by default, RabbitMQ or Kafka as
alternatives. The XD admin and one or more XD containers are

Software Engineering School

6

Built-in Jobs

Configuring Distributed Deployments

© EInnovator.org

http://www.einnovator.org/

Spring XD

also started separately. YARN based deployment is also
possible. Configuration options for XD Admin, XD Containers,
and XD Shell can be specified as command-line parameters,
as environment variables, or in the XD configuration file.

» Example: Start Support Service for XD

> cd hsqldb; bin/hsqldb-server

> cd zookeeper-3.4.6; bin/zkServer

> cd redis; bin/redis-server

> cd rabbitmq; rabbitmq-server –detached; rabbitmqctl status

» Example: Starting XD Admin

> xd-admin

» TIP: Starting XD Admin with Alternative Options

> xd-admin –transport rabbit

» Example: Starting XD Containers

server1 > xd-container –group bigdisk
server2 > xd-container –group fastcpu
server3 > xd-container –group bigdisk

In addition to the built-in HDFS modules for streams and jobs,
for further convenience Spring XD support HDFS client

commands. Table below summarizes Spring XD HDFS client
commands:

Command Description

hadoop config fs Set HDFS Namenode URI

hadoop config info Get Hadoop configuration details

hadoop config props
get | set | load | list

Get&set hadoop property, load or
list properties

hadoop fs
ls | cat | mkdir | cp | mv | rm |
du | count | expunge |
chmod | chown | chgrp,
setrep | tail | text | touchz
get (copyToLocal) |
put (copyFromLocal) |
copyMergeToLocal |
moveFromLocal

Execute HDFS command as
client

• Spring XD Project – http://projects.spring.io/spring-xd

• Spring XD Reference Manual (snapshoot) – http://docs.spring.io/spring-
xd/docs/1.2.0.BUILD-SNAPSHOT/reference/html/

• Latest GA Spring XD distribution (1.1.1) –
http://repo.spring.io/release/org/springframework/xd/spring-
xd/1.1.1.RELEASE/spring-xd-1.1.1.RELEASE-dist.zip

About the Author
Jorge Simão is a software engineer and IT Trainer, with
two decades long experience on education delivery both in
academia and industry. Expert in a wide range of
computing topics, he his an author, trainer, and director
(Education & Consulting) at EInnovator. He holds a B.Sc.,
M.Sc., and Ph.D. in Computer Science and Engineering.

Spring XD Training
Take a three-day instructor-led course in Spring XD.
Training covers installation and administration of Spring XD;
the XD Shell; creating, configuring, deploying, and scaling
streams and jobs; development of custom modules; data
ingestion in a Big Data environment; distributed deployment
and high availability. Consulting sessions on the follow-up of
training also available. Book now an on-site class:
www.einnovator.org/course/springxd

++ QuickGuides » EInnovator.org
» Spring Container, Spring MVC, Spring WebFlow

» RabbitMQ, Redis

» Cloud Foundry

» and much more...

++ Courses » EInnovator.org
» Core Spring, Spring Web, Enterprise Spring

» RabbitMQ, Redis, CloudFoundry

» BigData and Hadoop, Spark

» and much more...

EInnovator – Software Engineering School

EInnovator.org offers the best Software Engineering resources and education, in partnership with the most
innovative companies in the IT-world. Focusing on both foundational and cutting-edge technologies and
topics, at EInnovator software engineers and data-scientists can get all the skills needed to become top-of-
the-line on state-of-the-art IT professionals.

Training – Bookings & Inquiries
training@einnovator.org

Consultancy – Partnerships & Inquiries
consulting@einnovator.org

General Info
info@einnovator.org

Software Engineering School

Copyright © 2014 EInnovator.org. All rights reserved.

7

Hadoop Integration

Resources

Contacts

http://www.jpalace.org/course/java
http://www.jpalace.org/account/jorge.simao
mailto:info@jpalace.org
mailto:feedback@jpalace.org
mailto:training@jpalace.org
http://www.jpalace.org/
http://www.jpalace.org/
http://www.jpalace.org/course/java

