
Software Engineering School

» Spring Cloud Connectors

» Spring Cloud Config

» Service Discovery

» Client-Side Load-Balancing

» Smart Routing

» Circuit-Breakers

C
o

n
te

n
tSpring Cloud

© EInnovator.org

Jorge Simão, Ph.D.

Spring Cloud is a collection of related projects within the
Spring Framework ecosystem whose purpose is to
simplify application development in cloud environments,
including micro-services architectures.

Spring Cloud projects build of top of Spring Boot.
Consequently, dependency management is commonly
done via a Spring Boot parent and starter dependencies.
Modifications to the preferred version numbers for Spring
Cloud is done using the dependency-management
mechanisms of the selected build tool.

» Example: Spring Boot/Cloud Maven POM Base

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.0.RC1</version>
</parent>

Spring Cloud Connectors is a library (set) that provides
a uniform API for cloud applications to obtain information
about services bound to it – such as databases and
messages brokers – simplify and automate the creation of
connectors (driver wrappers) for those services, and
obtain general meta-data about application instances.
The motivating goal of the library is to allow application to
achieve cloud portability. That is, the same application
can run unchanged in different cloud platforms. Seemly
transition from local development and testing
environments – i.e. in the developer's laptop or a
continuous integration server – to the cloud is also
supported (production-development parity principle).

The core library is designed from the ground-up to be
extensible and support multiple cloud platforms (PasS),
using a CloudConnector abstraction to encapsulate all
cloud platform specific behaviour. The project official
distribution on GitHub includes connectors for Cloud
Foundry and Heroku. Local development and testing is
supported with the a local configuration connector.

Figure below depicts the architecture of Spring Cloud
Connectors.

Spring Cloud Connectors

Cloud
Foundry Heroku Local

Config

App

Core

Spring Data Service Connectors

Custom

ApplicationInstanceInfo ServiceInfo Connector

The Cloud abstraction offers most of the API, including
access to service descriptors (ServiceInfo), application
instance meta-data (ApplicationInstanceInfo), and
creation of service connectors. A Cloud object is a
wrapper around the low-level CloudConnector, and is
created by a singleton CloudFactory that uses a auto-
discovery mechanism to automatically infer the cloud
environment where the application is running. Connector
objects are specific to each type of service – e.g. a JDBC
DataSource for relational DB access, and
ConnectionFactory from Spring AMQP. Spring Data
provided abstractions are used to connect to NoSql DBs.

» Example: Creating a Cloud Object

CloudFactory cloudFactory = new CloudFactory();
Cloud cloud = cloudFactory.getCloud();

» Example: Looking up a ServiceInfo

ServiceInfo dbInfo = cloud.getServiceInfo("mydb");
String url = dbInfo.getUrl();

» Example: Creating a Connector

DataSource dataSource =
 cloud.getServiceConnector("mydb",
DataSource.class, null);

» Example: Cloud Connectors Maven Dependencies

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-cloud-
connectors</artifactId>
</dependency>

+
+

 Q
u

ic
kG

u
id

es
 »

 E
In

n
o

v
at

o
r.

o
rg

S
p

ri
n

g
 C

lo
u

d

8

Distributed Configuration

Spring Cloud Overview

Spring Cloud Connectors

http://www.einnovator.org/
http://www.einnovator.org/quickguide

© EInnovator.org

Spring Cloud

Software Engineering School

Deploying multiple instances of the same application is a
common technique to achieve scalability and high-availability
in cloud applications. Project functionality is also often split into
multiple semi-independent applications – as in a micro-
service architecture. In both scenarios, application
configuration can be challenging since it involves
reconfiguration of many systems at the same system. Rather
than modify application settings individually (e.g. in
environment variables or configuration files), a preferred
approach is to have application instances to “download” at
deployment time their settings from a configuration service.

Spring Cloud Config project provides an out-of-the-box
solution for distributed configuration. This include provisioning
of a Config Server (as a Spring Boot app) that exports
application common or specific configuration settings through a
REST API. The actual configuration settings are stored and
managed in one (or more) Git repositories (accessed internally
using the JGit library). Settings retrieved by client applications
are merged with other settings into the Environment
abstraction managed by a Spring ApplicationContext. Thus,
configuration of application components (beans) by
dependency-injection works unchanged in respect of the
source of the settings. Figure below depicts the architecture for
Spring Cloud Config.

Repository
GITConfig Server

Client App
Application Context

Environment Config
Resource

GIT
REST-WS

API
REST-WS

API

JGIT
key value
key value
key value

key value
key value
key value
key value
key value Repo Clone

A Config Server is setup as a Spring Boot app simply by
decorating one its @Configuration classes which the
annotation @EnableConfigServer. The environment property
spring.cloud.config.server.git.uri is set with the URL
of the GIT repository where the configuration resources are
stored. A local repository can also be used (e.g. for local
development or testing purposes) with URL prefix file://.

» Example: Starting an Embedded Config Server

@EnableConfigServer
@SpringBootApplication
public class ConfigServer {
 public static void main(String[] args) {
 SpringApplication.run(ConfigServer.class, args);
 }
}

» Example: Settings for GIT Repository in Config Server

spring.cloud.config.server.git.uri:
https://github.com/myuser/myproject-config

server.port=8888

spring.cloud.config.server.git.uri:
file://myproject/config-repo #dev/testing

» Example: GIT Repository Layout

myproject-config/
 application.properties
 application.yml
 myapp.properties
 myapp.yml
 myapp-dev.properties
 myapp-prod.properties
 myotherapp.properties

» Example: ConfigServer Maven Dependency

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-server</artifactId>
</dependency>

Files stored in the GIT repository follows naming conventions
similar to Spring Boot. Settings common to all applications
and all profiles should be stored in a file named
application.properties (or .yml or .yaml). Profile specific
setting should be stored in files named appplication-
profile.properties (or .yml). Settings specific to a particular
application with name appname should be store in files named
appname.properties and appname-profile.properties (or
YAML). Application and profile specific settings take
precedence over common settings.

The ConfigServer exposes a REST-API with several
endpoints for applications to retrieve settings – e.g. endpoint
GET /{application}/{profiles}, retrieves application and
profile settings combined with the common settings.

» Example: GIT Repository Layout

myproject-config/
 application.properties
 application.yml
 myapp.properties
 myapp.yml
 myapp-dev.properties
 myapp-prod.properties
 myotherapp.properties

» Example: Config Server REST-WS API

curl localhost:8888/myapp/default

{"name":"myapp","profiles":["default"],
"label":"master", "propertySources":
[{"name":"file:///myproject-
config/application.properties", "source":
{"Greeting":"Hello Cloud!"}}]}

Client applications for the ConfigServer define the coordinates
of the server in file bootstrap.properties (or .yml) as property

2

http://www.einnovator.org/
file:///myproject-config/application.properties
file:///myproject-config/application.properties
file://myproject/config-repo
https://github.com/myuser/myproject-config

© EInnovator.org

Spring Cloud

Software Engineering School

spring.cloud.config.uri. Application should also set their
name as property spring.application.name and the profiles
as spring.application.profiles.

» Example: Setup of Client App for Config Server

#bootstrap.properties
spring.cloud.config.uri: http://config.mydomain.io:8888
spring.application.name: myapp
spring.application.profiles: dev

» Example: Sample App using Remote Settings

@RestController
@SpringBootApplication
public class MyApp {
 @Value("${greeting}")
 private String greeting;

 @RequestMapping("/")
 public String home() {
 return "Config Server says: " + greeting;
 }

 public static void main(String[] args) {
 SpringApplication.run(MyApp.class, args);
 }
}

» Example: Client for ConfigServer Maven Dependency

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
</dependency>

Component configuration (even) when done with the settings
fetched from Spring Cloud Config server is done only when
then bean is created – e.g. at startup for a singleton bean.
Often, it is desirable to be able to dynamically reconfigure
beans without having to restart the application. Spring Cloud
project extends Spring Boot Actuator with additional
endpoints to trigger dynamic configuration. Endpoint POST
/env triggers properties in classes annotated with
@ConfigurationProperties to be reinitialized, and logging
levels to be updated (from logging.level.* properties) from
local configuration sources (i.e. local configuration files). This
mechanism requires beans to actively fetch the properties
values from classes annotated with
@ConfigurationProperties.

For automatic reconfiguration, beans can be annotated with
@RefreshScope. This makes the beans to be wrapped in a
proxy that delegates to a dynamic bean instance. Beans
cached in this scope can be invalidated by calling

RefreshScope .refreshAll(). Endpoint POST /refresh forces
environment settings to be retrieved from the Config Server,
and trigger the invalidation of RefreshScope beans. This in
turn makes new bean instances to be initialized with the new
values of the environment properties.

When an application is deployed with multiple instances it is
convenient to refresh all application instances quasi-
simultaneously with a single POST /refresh. This can be
accomplish by importing project Spring Cloud Bus. This
makes refresh events to be multi-casted trough a message
broker (e.g. RabbitMQ/AMQP), and propagated to other
instances. To connect to the broken, a RabbitMQ
ConnectionFactory is picked up from the
ApplicationContext or auto-configured if none is found.

» Example: Refreshing Environment & Beans

curl -X POST localhost:8080/refresh

curl localhost:8080/refresh -d ''

» Example: RabbitMQ Settings for Spring Boot & Bus

spring.rabbitmq.uri= amqp://joe:jopass@localhost:5672/

» Example: Spring Cloud Bus Maven Dependency

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-bus</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-bus-rabbitmq</artifactId>
</dependency>

Micro-service architectures are characterized by multiple semi-
independent services working together. A common pattern is to
have gateway service or UI to perform the integration across
the different services, although more complex solutions are
possible such as multiple-layer distributed hierarchies and
“lateral” communication between services . A pre-condition for
these interactions to occur, is for services to have a way to
discover each other locations – defined as physical IPs or DNS
host-names, and TCP/IP ports. A common approach to
accomplish this is by using a naming service with an API for
service registration and lookup/discovery. Spring Cloud
provides libraries that integrate with several naming services,
of which Netflix Eureka was the first to be supported.

Netflix Eureka naming service allow multiple service instances
to be registered per service name – which makes it particularly
well suitable for replicated services as is done in cloud
computing. When looking up a service, clients retrieve the full

3

Service Discovery – NetFlix Eureka
Dynamic Configuration

http://www.einnovator.org/
http://config.mydomain.io:8888/

© EInnovator.org

Spring Cloud

Software Engineering School

list of instance locations for the requested service name.
Registrations are also kept updated and “live” by having the
service instance to periodically advertise their status to thee
Eureka server. Multiple Eureka server instances can be
started for high-availability and load-balancing. Instances can
be configured to cross register themselves and to download
other instances in-memory registry – thus making service
location information to be disseminated “epidemically”. Figure
below depicts the architecture for service registration with
Eureka.

Eureka Server
Service B

Service A
Instance #0

Register

Service A

REST-WS

API

Lookup

cache
Service A

Client App
URI*

URI*

Keep Alive

Annotation @EnableEurekaServer is used to start an
embedded Eureka server in a Spring Boot application.
Eureka instances can be configured like clients to other
instances for cross-registration. Otherwise, for standalone
operation the environment variables
eureka.client.registerWithEureka and
eureka.client.fetchRegistry should be set to false.

» Example: Starting an Embedded Eureka Server

@EnableEurekaServer
@SpringBootApplication
public class EurekaServer {
 public static void main(String[] args) {
 SpringApplication.run(EurekaServer.class);
 }
}

» Example: Settings for Standalone Eureka Server

eureka:
 client:
 registerWithEureka: false
 fetchRegistry: false

» Example: EurekaServer Maven Dependency

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-eureka-server</artifactId>
</dependency>

Registering a Spring Boot application as service in Eureka is
also straightforward – annotation @EnableEurekaClient

triggers this behaviour declaratively. Environment variable
eureka.client.serviceUrl.defaultZone specifies the
location of one (or more) Eureka server(s) where registration
should take place. By default applications are registered under
the name ${spring.application.name}, instance ID $
{spring.cloud.client.hostname}:$
{spring.application.name}:${server.port}, and location
${spring.cloud.client.hostname}:${server.port}. This
settings can be modified with variables eureka.instance.
{appname, instance_id, hostname, nonSecuredPort}.

» Example: Registering Boot App as Service in Eureka

@EnableEurekaClient
@SpringBootApplication
public class MyService {
 public static void main(String[] args) {
 SpringApplication.run(MyService.class);
 }
}

» Example: Settings for Client to EurekaServer

eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

eureka:
 instance:
 appname: myservice
 instanceid: ${random.value}

» Example: Client Settings – CloudFoundry Routing

eureka:
 instance:
 hostname: ${vcap.application.uris[0]}
 nonSecurePort: 80

» Example: Settings – Direct Interaction in CloudFoundry

eureka:
 instance:
 hostname: ${CF_INSTANCE_IP}
 nonSecurePort: ${CF_INSTANCE_PORT}

» Example: Client for EurekaServer Maven Dependency

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>

Service lookup is simplified with annotation
@EnableDiscoveryClient which makes an instance of
DiscoveryClient to be automatically created as a managed
component. The API of DiscoveryClient allows retrieval of
service information from an Eureka server. The configuration
to connect to Eureka is the same as for registration of a
service.

4

http://www.einnovator.org/
http://localhost:8761/eureka/

Spring Cloud

Software Engineering School

» Example: Injecting a DiscoveryClient

@EnableDiscoveryClient
@SpringBootApplication
public class MyClient {
 @Autowired
 private DiscoveryClient discoveryClient;

 public List<Map<?,?>> getProducts() {
 ServiceInstance instance = chooseOne(

 discoveryClient.getInstances("PRODUCTS"));
 String uri = instance.getUri().toString()
 return new RestTemplate().getForObject(uri, List.class);
 }
 …
}

In addition to integrate with Netflix Eureka, Spring Cloud also
integrates with other naming services such as Hashicorp
Consul and ZooKeeper (project part of the Hadoop
ecosystem). An object of type DiscoveryClient is auto-
configured if annotation @EnableDiscoveryClient is used –
thus, following the same programming model as with Eureka.
Importing the Spring Cloud Consul (or ZooKeeper) client
libraries in the classpath is the triggering condition for the
server to be contacted. The Consul server will be contacted by
default in location localhost:8500, but this can modified by
setting properties spring.cloud.consul.{host,port}.
Zookeeper server will be contacted in the default location
localhost:2181, or alternatively the location specified in
property zookeeper.connectString.

» Example: ZooKeeper Discovery Maven Dependency

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-zookeeper-discovery</artifactId>
</dependency>

When a service is deployed with multiple instances – as is
common in cloud computing, requests need to be distributed
(load-balanced) across the instances using some criteria such
as round-robin or random. The load-balancing can be done by
client applications or by a dedicated load-balancing component
(e.g. the Router of a PaaS such as CloudFoundry). Ribbon is
a Netflix library to perform client-side load-balancing. It
integrates with Netflix Eureka server to retrieve the list of
instances for registered services. Figure below depicts the
architecture for Ribbon.

Service A
Instance #2

Service A
Instance #1

Service A
Instance #0

Client App

{Server *}

Eureka Server Register

Ribbon
{Server *}

Spring Cloud Netflix Ribbon provides a convenient
programming model to simplify the use of Ribbon. Annotation
@RibbonClient enables the set up and configuration of
Ribbon. The default load-balancing criteria (distance based),
and other setting can be reconfigured (e.g. defining a bean of
type IPing modifies the strategy to detect if an instance is
reachable). A bean of type LoadBalancerClient is auto-
configured, and Its API can be used to retrieve the selected
single instance for a named service.

» Example: Ribbon Configuration

@RibbonClient
@Configuration
public class AppConfig {
 @Bean
 public IPing ribbonPing(IClientConfig config) {
 return new PingUrl();
 }
}

» Example: Consume Load-balanced REST-WS

@Service
public class MyClient {
 @Autowired
 private LoadBalancerClient loadBalancer;

 public static List<Map<?,?>> getProducts() {
 ServiceInstance instance = loadBalancer.choose("products");
 String uri = String.format("http://%s:%s/product",
 instance.getHost(), instance.getPort());
 return new RestTemplate().getForObject(uri);
 }
}

The location of service instances can be obtained
automatically from an Eureka server if the dependency for
eureka-client is in the classpath, and setting
eureka.client.serviceUrl.defaultZone is defined
accordingly. Alternatively, Ribbon supports manual
configuration and integration with Spring Cloud Config
Server, by defining environment properties named <<service-

Client-Side Load-Balancing

Service Discovery – Consul & ZooKeeper

© EInnovator.org

5

http://www.einnovator.org/

Spring Cloud

Software Engineering School

name>>.ribbon.listOfServer, with a comma-separated list of
URIs (or hostnames) for the service instances as value.

» Example: Manual Service Instance Config (w/o Eureka)

products:
 ribbon:
 listOfServers: p0.mysite.io, p1.mysite.io
ribbon:
 eureka:
 enabled: false

» Example: Ribbon Maven Dependency

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-ribbon</artifactId>
</dependency>

Spring Cloud Netflix Eureka and Ribbon also integrate, by
auto-configuring a RestTemplate which is configured internally
with an HttpRequestFactory that accepts and automatically
resolves logical service names in URIs. This allows load-
balancing to occur automatically without dealing directly with
the LoadBalancerClient API.

» Example: Access REST-WS RestTemplate – Logical URI

@EnableDiscoveryClient
@Configuration
public class RemoteBookManager implements BookManager {
 @Autowired
 private RestTemplate template;

 public List<Map<?,?>> getProducts() {
 return template.getForObject(
 "http://BOOKS/catalog", List.class);
 }
}

Netflix Feign is a library that creates REST-WS client classes
automatically from the interface specifications. Spring Cloud
Netflix Feign extends Feign to support Spring MVC
annotations – like @RequestMapping – to map interface
methods to REST-WS endpoints. The annotation
@FeignClient marks interfaces for proxy generation. When
integrated with Ribbon (i.e. Ribbon is on classpath), the
value() attribute specifies the logical name of the service to
consume. Alternatively, a physical location of a service
instance can be specific with attribute url().

» Example: REST-WS Interface w/ Spring MVC Mappings

@FeignClient("books")

public interface BookManager {

 @RequestMapping(value="/book", method=GET)
 List<Map> getBooks();

 @RequestMapping(value="/book", method=POST)
 void newBook(Map<String,Object> book);
}

» Example: Hard-Wired REST-WS Location

@FeignClient(url="http://books.bookjungle.org")
public interface BooksManager { … }

» Example: Feign Maven Dependency

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-feign</artifactId>
</dependency>

Annotation @EnableFeignClients enables the declarative
creation of the the proxys in a Spring Boot/Spring Cloud
project, which are defined as Spring managed components –
i.e. added to the ApplicationContext and available for
dependency-injection in other components (beans).

» Example: Injecting Proxy for REST-WS Client

@EnableFeignClients
@SpringBootApplication
public class BooksWebApp { … }

» Example: Injecting Proxy for REST-WS Client

@Controller
public class BookController {

@Autowired

private BookManager manager;

@RequestMapping(value="/catalog", method=GET)

public static String catalog(Model model) {

 model.addAttribute("books", manager.getBooks();

return "book/catalog";

 }
}

A dedicated routing component can also created by integration
with Netflix Zuul project. Annotation @EnableZuulProxy
creates an embedded Zuul server instance, that maps and
splits URL namespace across services registered in Eureka –
e.g. /products and /users will be mapped and routed to
intances of service PRODUCTS an USERS. This is specially
useful to simplify the creation of API gateways.

When invoking a remote service that might be faulty, it is often
preferred to not make the invocation and fallback to alternative
strategy than to wait until the service comes back. The circuit-

Reliability with Circuit-Breakers

Declarative REST-WS

6

© EInnovator.org

http://www.einnovator.org/

Spring Cloud

About the Author
Jorge Simão is a software engineer and IT Trainer, with
two decades long experience on education delivery both in
academia and industry. Expert in a wide range of
computing topics, he his an author, trainer, and director
(Education & Consultancy) at EInnovator. He holds a
B.Sc., M.Sc., and Ph.D. in Computer Science and
Engineering.

Spring Micro-Services Training
The Spring Micro-Services course offers in-depth study
and hand-ons working experience using Spring Boot and
Spring Cloud to build cloud-native applications and micro-
service architectures. Applications are developed and tested
in a local environment, and deployed into PWS Cloud
Foundry environment.
Book for a training event in a date&location of your choice:
www.einnovator.org/course/spring-microservices

Software Engineering School

++ QuickGuides » EInnovator.org
» Spring Container, Spring MVC, Spring WebFlow

» RabbitMQ, Redis

» Cloud Foundry, Spring XD

» and much more...

++ Courses » EInnovator.org
» Core Spring, Spring Web, Enterprise Spring

» RabbitMQ, Redis, CloudFoundry

» BigData and Hadoop, Spring XD, Spark

» and much more...

EInnovator – Software Engineering School

EInnovator.org offers the best Software Engineering resources and education, in partnership with the most
innovative companies in the IT-world. Focusing on both foundational and cutting-edge technologies and
topics, at EInnovator software engineers and data-scientists can get all the skills needed to become top-of-
the-line on state-of-the-art IT professionals.

Training – Bookings & Inquiries
training@einnovator.org

Consultancy – Partnerships & Inquiries
consulting@einnovator.org

General Info
info@einnovator.orgCopyright © 2014 EInnovator.org. All rights reserved.

breaker concept – as implemented in the Netflix Hystrix
library – captures this idea by defining a state-machine whose
state determine if/when a possibly faulty operation should be
attempted. Hystrix project integrates seemly with Spring, by
using Spring AOP to wrap beans into proxies that “protect”
methods with circuit-breakers. Annotation @HystrixCommand
marks and configures methods to be made resilient by a
circuit-breaker. Attribute fallbackMethod is used to specify an
alternative method/strategy to call when the method is invoked,
but the circuit-breaker is currently open. Detailed configuration
of the properties that control the circuit-breaker is defined in
attribute commandProperties() having as value annotation
@HystrixProperty.

» Example: Using Circuit-Breaker in REST-WS Invocation

@HystrixCommand(fallbackMethod="getBookFallback")
@RequestMapping(method = RequestMethod.GET)
public Map getBook(Long bookId) {
 return restTemplate.getForObject(bookUri, Map.class, bookId);
}

public Map[] getBookFallback(Long bookId) { return ...; }

Hystrix project includes a dashboard (web UI) that can be
used to monitor the state and metrics of the circuit-breakers in
an app, reachable on endpoint /hystrix. The state of individual
circuit-breakers can also be captured in REST endpoint
/hystrix.stream. Annotation @EnableHystrixDashboard is
used in a Spring Cloud project to enable the Hystrix
dashboard endpoints. Project Turbine can also be used to

aggregate the metrics from multiple instances of a service (or
several services) looked-up in an Eureka server.

Spring Cloud Sleuth is a project that integrates with the
distributed tracing tool Zipkin (inspired in google project
Dapper). Sleuth & Zipkin captures detailed information of the
locations a distributed request reaches – directly and by
cascading of requests. Each direct interaction between
services is designated a span, and the aggregate tree of
cascaded spans produced from a single initial request a trace.
Importing the Spring Cloud Sleuth dependency in a Spring
boot project make tracing information be registered in log files,
and it is also registered in the Zipkin server for dashboard
inspection.

• Spring Cloud Project home page: http://projects.spring.io/spring-cloud/

• Spring Cloud Reference Manual:
https://raw.githubusercontent.com/antirez/redis/3.2/redis.conf

• Spring Cloud on GitHub:
https://raw.githubusercontent.com/antirez/redis/3.2/redis.conf

7

Contacts

Cloud Monitoring and Tracing

Resources

http://www.jpalace.org/
http://www.einnovator.org/course/spring-microservices
http://www.jpalace.org/account/jorge.simao
https://raw.githubusercontent.com/antirez/redis/3.2/redis.conf
https://raw.githubusercontent.com/antirez/redis/3.2/redis.conf
http://redis.io/
mailto:info@jpalace.org
mailto:feedback@jpalace.org
mailto:training@jpalace.org
http://www.jpalace.org/

